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Preface

This text grew out of lecture notes that I developed over the years for the
“Real Analysis” graduate sequence here at Georgia Tech. This two-semester
sequence is taken by first-year mathematics graduate students, well-prepared
undergraduate mathematics majors, and graduate students from a wide va-
riety of engineering and scientific disciplines. Covered in this book are the
topics that are taught in the first semester: Lebesgue measure, the Lebesgue
integral, differentiation and absolute continuity, the Lebesgue spaces Lp(E),
and Hilbert spaces and L2(E). This material not only forms the basis of a core
subject in pure mathematics, but also has wide applicability in science and
engineering. A text covering the second semester topics in analysis, including
abstract measure theory, signed and complex measures, operator theory, and
functional analysis, is in development.

This text is an introduction to real analysis. There are several classic anal-
ysis texts that I keep close by on my bookshelf and refer to often. However, I
find it difficult to use any of these as the textbook for teaching a first course
on analysis. They tend to be dense and, in the classic style of mathematical
elegance and conciseness, they develop the theory in the most general setting,
with few examples and limited motivation. These texts are valuable resources,
but I suggest that they should be the second set of books on analysis that
you pick up.

I hope that this text will be the analysis text that you read first. The def-
initions, theorems, and other results are motivated and explained; the why
and not just the what of the subject is discussed. Proofs are completely rigor-
ous, yet difficult arguments are motivated and discussed. Extensive exercises
and problems complement the presentation in the text, and provide many
opportunities for enhancing the student’s understanding of the material.

xiii



xiv Preface

Audience

This text is aimed at students who have taken a standard (proof-based)
undergraduate mathematics course on the basics of analysis. A brief review
of the needed background material is presented in the Preliminaries section
of the text. This includes:

• sequences, series, limits, suprema and infima, and limsups and liminfs,
• functions,
• cardinality,
• basic topology of Euclidean space (open, closed, and compact sets),
• continuity and differentiability of real-valued functions,
• the Riemann integral.

Online Resources

A variety of resources are available on the author’s website,

http://people.math.gatech.edu/∼heil/

These include the following.

• A Chapter 0, which contains a greatly expanded version of the mate-
rial that appears in the Preliminaries section of this text, along with
discussions and exercises.

• An Alternative Chapter 1, which is an expanded version of the material
presented in Chapter 1, including detailed discussion, motivation, and
exercises, focused on the setting of normed spaces.

• A Chapter 10, which provides an introduction to abstract measure the-
ory.

• An Instructor’s Guide, with a detailed course outline, commentary, re-
marks, and extra problems. The exposition and problems in this guide
may be useful for students and readers as well as instructors.

• Selected Solutions for Students, containing approximately one worked
solution of a problem or exercise from each section of the text.

• An Errata List that will be updated as I become aware of typographical
or other errors in the text.

Additionally, a Solutions Manual is available to instructors upon re-
quest; instructions for obtaining a copy are given on the Birkhäuser website
for this text.



Preface xv

Outline

Chapter 1 presents a short review of metric and normed spaces. Students
who have completed an undergraduate analysis course have likely encountered
much of this material, although possibly only in the context of the Euclidean
space Rd (or Cd) instead of abstract metric spaces. The instructor has the
option of beginning the course here or proceeding directly to Chapter 2. The
online Alternative Chapter 1 presents a significantly expanded version of
this chapter focused on normed spaces. (A detailed introduction to the more
general setting of metric spaces is available in the first chapters of the author’s
text Metrics, Norms, Inner Products, and Operator Theory [Heil18].)

In Chapter 2 we begin the study of Lebesgue measure. The fundamental
question that motivates this chapter is: Can we assign a “volume” or “mea-
sure” to every subset of Rd in such a way that all of the properties that
we expect of a “volume” function are satisfied? For example, we want the
measure of a cube or a ball in Rd to coincide with the standard definition of
the volume of a cube or ball, and if we translate an object rigidly in space
then we want its measure to always remain the same. If we break an object
into countably many disjoint pieces, then we want the measure of the original
object to be the sum of the measures of the pieces. Surprisingly (at least to
me!), this simply can’t be done (more precisely, the Axiom of Choice implies
that it is impossible). However, if we relax this goal somewhat then we find
that we can define a measure that obeys the correct rules for a “large” class
of sets (the Lebesgue measurable sets). Chapter 2 constructs and studies
this measure, which we call the Lebesgue measure of subsets of Rd.

In Chapters 3 and 4 we define the integral of real-valued and complex-
valued functions whose domain is a measurable subset of Rd. Unfortunately,
we cannot define the Lebesgue integral of every function. Chapter 3 in-
troduces the class of measurable functions and deals with issues related to
convergence of sequences of measurable functions, while Chapter 4 defines
and studies the Lebesgue integral of a measurable function. The Lebesgue
integral extends the Riemann integral, but is far more general. We can de-
fine the Lebesgue integral for functions whose domain is any measurable set.
We prove powerful results that allow us, in a large family of cases, to make
conclusions about the convergence of a sequence of Lebesgue integrals, or
to interchange the order of iterated integrals of functions of more than one
variable.

The Fundamental Theorem of Calculus (FTC) is, as its name suggests,
central to analysis. Chapters 5 and 6 explore issues related to differen-
tiation and the FTC in detail. We see that there are surprising examples
of nonconstant functions whose derivatives are zero at “almost every” point
(and therefore fail the FTC). In our quest to fully understand the FTC we de-
fine functions of bounded variation and study averaging operations in Chap-
ter 5. Then in Chapter 6 we introduce the class of absolutely continuous
functions, which turn out to be the functions for which the FTC holds. The
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Banach–Zaretsky Theorem plays a prominent role in Chapter 6, and it is
central to our understanding of absolute continuity and its impact.

In Chapter 7 our focus turns from individual functions to spaces of func-
tions. The Lebesgue spaces Lp(E) group functions by integrability proper-
ties, giving us a family of spaces indexed by an extended real number p with
0 < p ≤ ∞. For p ≥ 1 these are normed vector spaces of functions, while
for 0 < p < 1 they are metric spaces whose metric is not induced from a
norm. The case p = 2 is especially important, because we can define an inner
product on L2(E), which makes it a Hilbert space. This topic is explored in
Chapter 8. In a metric space, all that we can do is define the distance be-
tween points in the space. In a normed space we can additionally define the
length of each vector in the space. But in a Hilbert space, we furthermore have
a notion of angles between vectors and hence can define orthogonality. This
leads to many powerful results, including the existence of an orthonormal
basis for every separable Hilbert space. Even though a Hilbert space can be
infinite-dimensional, in many respects our intuitions from Euclidean space
hold when we deal with a Hilbert space.

Chapter 9 contains “extra” material that is usually not covered in our
real analysis sequence here at Georgia Tech, but which has many striking ap-
plications of the techniques developed in the earlier chapters. First we define
the operation of convolution. Then we introduce and study the Fourier trans-
form and Fourier series. These results form the core of the field of harmonic
analysis, which has wide applicability throughout mathematics, physics, and
engineering. Convolution is a generalization of the averaging operations that
were used in Chapters 5 and 6 to characterize the class of functions for
which the Fundamental Theorem of Calculus holds. The Fourier transform
and Fourier series allow us to both construct and deconstruct a wide class
of functions, signals, or operators in terms of much simpler building blocks
based on complex exponentials (or sines and cosines in the real case). Al-
though Chapter 9 presents only a taste of the theorems of harmonic anal-
ysis (which deserves another course, and a future text, to do it justice), we
do get to see many applications of all of the tools that we derived in earlier
chapters, including convergence of sequences of integrals (via the Dominated
Convergence Theorem), interchange of iterated integrals (via Fubini’s Theo-
rem), and the Fundamental Theorem of Calculus (via the Banach–Zaretsky
Theorem).

Many exercises and problems appear in each section of the text. The Ex-
ercises are directly incorporated into the development of the theory in each
section, while the additional Problems given at the end of each section provide
further practice and opportunities to develop understanding.
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Course Options

There are many options for building a course around this text. The course
that I teach at Georgia Tech is fast-paced, but covers most of the text in one
semester. Here is a brief outline of such a one-semester course; a more detailed
outline with much additional information (and extra problems) is contained
in the Instructor’s Guide that is available on the author’s website.

Chapter 1: Assign for student reading, not covered in lecture.
Chapter 2: Sections 2.1–2.4.
Chapter 3: Sections 3.1–3.5. Omit Section 3.6.
Chapter 4: Sections 4.1–4.6.
Chapter 5: Sections 5.1–5.2, and selected portions of Sections 5.3–5.5.
Chapter 6: Sections 6.1–6.4. Omit Sections 6.5-6.6.
Chapter 7: Sections 7.1–7.4.
Chapter 8: Sections 8.1–8.4 (as time allows).
Chapter 9: Bonus material, not covered in lecture.

Another option is to begin the course with Chapter 1 (or the online Al-
ternative Chapter 1). A fast-paced course could cover most of Chapters
1–8. A moderately paced course could cover the first half of the text in detail
in one semester, while a moderately paced two-semester course could cover
all of Chapters 1–9 in considerable detail.
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Preliminaries

We use the symbol ⊓⊔ to denote the end of a proof, and the symbol ♦ to
denote the end of a definition, remark, example, or exercise. We also use ♦
to indicate the end of the statement of a theorem whose proof will be omitted.
A few problems are marked with an asterisk *; this indicates that they may
be more challenging. A detailed index of symbols employed in the text can
be found at the end of the volume.

Numbers

The set of natural numbers is denoted by N = {1, 2, 3, . . . }. The set of integers
is Z = {. . . ,−1, 0, 1, . . . }, Q denotes the set of rational numbers, R is the set
of real numbers, and C is the set of complex numbers. We often refer to R as
the real line, and to C as the complex plane.

Complex Numbers. The real part of a complex number z = a+ib (where
a, b ∈ R) is Re(z) = a, and its imaginary part is Im(z) = b. We say that z
is rational if both its real and imaginary parts are rational numbers. The
complex conjugate of z is z = a − ib. The modulus, or absolute value, of z is

|z| =
√

zz =
√

a2 + b2.

If z 6= 0 then its polar form is z = reiθ where r = |z| > 0 and θ ∈ [0, 2π). In
this case the argument of z is arg(z) = θ. Given any z ∈ C, there is a complex
number α such that |α| = 1 and αz = |z|. If z 6= 0 then α is uniquely given
by α = e−iθ = z/|z|, while if z = 0 then α can be any complex number that
has unit modulus.

Extended Real Numbers. The set of extended real numbers [−∞,∞] is

[−∞,∞] = R ∪ {−∞,∞}.

1
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We extend many of the normal arithmetic and order notations and oper-
ations to [−∞,∞]. For example, if a ∈ [−∞,∞] then a is a real number if
and only if −∞ < a < ∞. If −∞ < a ≤ ∞ then we set a+∞ = ∞. However,
∞ − ∞ and −∞ + ∞ are undefined, and are referred to as indeterminate
forms. If 0 < a ≤ ∞, then we define

a · ∞ = ∞, (−a) · ∞ = −∞, a · (−∞) = −∞, (−a) · (−∞) = ∞.

We also adopt the following conventions:

0 · (±∞) = 0 and
1

±∞ = 0.

The Dual Index. Let p be an extended real number in the range
1 ≤ p ≤ ∞. The dual index to p is the unique extended real number p′ that
satisfies

1

p
+

1

p′
= 1.

We have 1 ≤ p′ ≤ ∞, and (p′)′ = p. If 1 < p < ∞, then we can write p′

explicitly as

p′ =
p

p − 1
.

Some examples are 1′ = ∞,
(

3
2

)′
= 3, 2′ = 2, 3′ = 3

2 , and ∞′ = 1.

The Notation F. In order to deal simultaneously with the complex plane
and the extended real line, we let the symbol F denote a choice of either
[−∞,∞] or C. Associated with this choice, we declare that:

• if F = [−∞,∞], then the word scalar means a finite real number c ∈ R;

• if F = C, then the word scalar means a complex number c ∈ C.

Note that a scalar cannot be ±∞; instead, a scalar is always a real or complex
number.

Sets

The notation x ∈ X means that x is an element of the set X. We often refer
to an element of X as a point in X.

We write A ⊆ B to denote that A is a subset of a set B. If A ⊆ B and
A 6= B then we say that A is a proper subset of B, and we write A ( B.

The empty set is denoted by ∅.
A collection of sets {Xi}i∈I is disjoint if Xi∩Xj = ∅ whenever i 6= j. The

collection {Xi}i∈I is a partition of X if it is disjoint and
S

i∈IXi = X.
If X is a set, then the complement of S ⊆ X is X \S =

{
x ∈ X : x /∈ S

}
.

We sometimes abbreviate X \S as SC if the set X is understood. If A and B
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are subsets of X, then the relative complement of A in B is

B\A = B ∩ AC = {x ∈ B : x /∈ A}.

The power set of X is P(X) =
{
S : S ⊆ X

}
, the set of all subsets of X.

The Cartesian product of sets X and Y is X×Y = {(x, y) : x ∈ X, y ∈ Y },
the set of all ordered pairs of elements of X and Y. The Cartesian product
of finitely many sets X1, . . . ,XN is

N∏

j=1

Xj = X1 × · · · × XN =
{
(x1, . . . , xN ) : xk ∈ Xk, k = 1, . . . , N

}
.

Equivalence Relations

Informally, we say that ∼ is a relation on a set X if for each choice of x and
y in X we have only one of the following two possibilities:

x ∼ y (x is related to y) or x 6∼ y (x is not related to y).

An equivalence relation on a set X is a relation ∼ that satisfies the following
conditions for all x, y, z ∈ X.

• Reflexivity: x ∼ x.

• Symmetry: If x ∼ y then y ∼ x.

• Transitivity: If x ∼ y and y ∼ z then x ∼ z.

For example, if we declare that x ∼ y if and only if x − y is rational, then ∼
is an equivalence relation on R.

If ∼ is an equivalence relation on X, then the equivalence class of x ∈ X
is the set [x] that contains all elements that are related to x:

[x] = {y ∈ X : x ∼ y}.

Any two equivalence classes are either identical or disjoint. That is, if x and y
are two elements of X, then either [x] = [y] or [x] ∩ [y] = ∅. The union of
all equivalence classes [x] is X. Consequently, the set of distinct equivalence
classes forms a partition of X.

Intervals

An interval in the real line R is any one of the following sets:

• (a, b), [a, b), (a, b], [a, b] where a, b ∈ R and a < b, or
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• (a,∞), [a,∞), (−∞, a), (−∞, a] where a ∈ R, or

• R = (−∞,∞).

An open interval is an interval of the form (a, b), (a,∞), (−∞, a), or
(−∞,∞). A closed interval is an interval of the form [a, b], [a,∞), (−∞, a],
or (−∞,∞). We refer to [a, b] as a finite closed interval, a bounded closed
interval, or a compact interval.

The empty set ∅ and a singleton {a} are not intervals, but even so we
adopt the notational conventions

[a, a] = {a} and (a, a) = [a, a) = (a, a] = ∅.

We also consider extended intervals, which are any of the following sets:

• (a,∞] = (a,∞) ∪ {∞} or [a,∞] = [a,∞) ∪ {∞}, where a ∈ R,

• [−∞, b) = (−∞, b) ∪ {−∞} or [−∞, b] = (−∞, b] ∪ {−∞}, where b ∈ R,
or

• [−∞,∞] = R ∪ {−∞} ∪ {∞}.
An extended interval is not an interval—whenever we refer to an “interval”
without qualification we implicitly exclude the extended intervals.

Euclidean Space

We let Rd denote d-dimensional real Euclidean space, the set of all ordered
d-tuples of real numbers. Similarly, Cd is d-dimensional complex Euclidean
space, the set of all ordered d-tuples of complex numbers.

The zero vector is 0 = (0, . . . , 0). We use the same symbol “0” to denote
the zero vector and the number zero; the intended meaning should be clear
from context.

The dot product of vectors x = (x1, . . . , xd) and y = (y1, . . . , yd) in Rd or
Cd is

x · y = x1y1 + · · · + xdyd,

and the Euclidean norm of x is

‖x‖ = (x · x)1/2 =
(
|x1|2 + · · · + |xd|2

)1/2
.

The translation of a set E ⊆ Rd by a vector h ∈ Rd (or a set E ⊆ Cd by
a vector h ∈ Cd) is E + h = {x + h : x ∈ E}.
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Sequences

Let I be a fixed set. Given a set X and points xi ∈ X for i ∈ I, we write
{xi}i∈I to denote the sequence of elements xi indexed by the set I. We call I
an index set in this context, and refer to xi as the ith component of the se-
quence {xi}i∈I . If we know that the xi are scalars (real or complex numbers),
then we often write (xi)i∈I instead of {xi}i∈I . Technically, a sequence {xi}i∈I

is shorthand for the mapping x : I → X given by x(i) = xi for i ∈ I, and
therefore the components xi of a sequence need not be distinct. If the index
set I is understood then we may write {xi} or {xi}i, or if the xi are scalars
then we may write (xi) or (xi)i.

Often the index set I is countable. If I = {1, . . . , d} then we sometimes
write a sequence in list form as

{xn}d
n=1 = {x1, . . . , xd},

or if the xn are scalars then we often write

(xn)d
n=1 = (x1, . . . , xd).

Similarly, if I = N then we may write

{xn}n∈N = {x1, x2, . . . },

or if each xn is a scalar then we usually write

(xn)n∈N = (x1, x2, . . . ).

A subsequence of a countable sequence {xn}n∈N = {x1, x2, . . . } is a se-
quence of the form {xnk

}k∈N = {xn1
, xn2

, . . . } where n1 < n2 < · · · .
We say that a countable sequence of real numbers (xn)n∈N is monotone

increasing if xn ≤ xn+1 for every n, and strictly increasing if xn < xn+1

for every n. We define monotone decreasing and strictly decreasing sequences
similarly.

The Kronecker Delta and the Standard Basis Vectors

Given indices i and j in an index set I (typically I = N), the Kronecker delta
of i and j is the number δij defined by the rule

δij =

{
1, if i = j,

0, if i 6= j.

For each integer n ∈ N, we let δn denote the sequence
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δn = (δnk)k∈N = (0, . . . , 0, 1, 0, 0, . . . ).

That is, the nth component of the sequence δn is 1, while all other components
are zero. We call δn the nth standard basis vector, and we refer to the family
{δn}n∈N as the sequence of standard basis vectors, or simply the standard
basis.

Functions

Let X and Y be sets. We write f : X → Y to mean that f is a function
with domain X and codomain Y. We usually write f(x) to denote the image
of x under f, but if L : X → Y is a linear map from one vector space X to
another vector space Y then we may write Lx instead of L(x). We also use
the following notation.

• The direct image of a set A ⊆ X under f is f(A) = {f(x) : x ∈ A}.
• The inverse image of a set B ⊆ Y under f is

f−1(B) = {x ∈ X : f(x) ∈ B}.

• The range of f is range(f) = f(X) = {f(x) : x ∈ X}.
• f is injective, or one-to-one, if f(x) = f(y) implies x = y.

• f is surjective, or onto, if range(f) = Y.

• f is bijective if it is both injective and surjective. The inverse function of
a bijection f : X → Y is the function f−1 : Y → X defined by f−1(y) = x
if f(x) = y.

• Given S ⊆ X, the restriction of a function f : X → Y to the domain S is
the function f |S : S → Y defined by (f |S)(x) = f(x) for x ∈ S.

• The zero function on X is the function 0: X → R defined by 0(x) = 0 for
every x ∈ X. We use the same symbol 0 to denote the zero function and
the number zero.

• The characteristic function of A ⊆ X is the function χA : X → R given by

χA(x) =

{
1, if x ∈ A,

0, if x /∈ A.

• If the domain of a function f is Rd, then the translation of f by a vector
a ∈ Rd is the function Taf defined by Taf(x) = f(x − a) for x ∈ Rd.
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Cardinality

A set X is finite if either X is empty or there exists a positive integer n and a
bijection f : {1, . . . , n} → X. In the latter case we say that X has n elements.

A set X is denumerable or countably infinite if there exists a bijection
f : N → X.

A set X is countable if it is either finite or denumerable. In particular, N,
Z, and Q are all denumerable and hence are countable.

A set X is uncountable if it is not countable. In particular, R and C are
uncountable.

Extended Real-Valued Functions

A function that maps a set X into the real line R is called a real-valued
function, and a function that maps X into the extended real line [−∞,∞]
is an extended real-valued function. Every real-valued function is extended
real-valued, but an extended real-valued function need not be real-valued.
An extended real-valued function f is nonnegative if f(x) ≥ 0 for every x.

Let f : X → [−∞,∞] be an extended real-valued function. We associate
to f the two extended real-valued functions f+ and f− defined by

f+(x) = max{f(x), 0} and f−(x) = max{−f(x), 0}.

We call f+ the positive part and f− the negative part of f. They are each
nonnegative extended real-valued functions, and for every x we have

f(x) = f+(x) − f−(x) and |f(x)| = f+(x) + f−(x).

Given f : X → [−∞,∞], to avoid multiplicities of parentheses, brackets,
and braces, we often write f−1(a, b) = f−1((a, b)), f−1[a,∞) = f−1([a,∞)),
and so forth. We also use shorthands such as

{f ≥ a} = {x ∈ X : f(x) ≥ a},
{f = a} = {x ∈ X : f(x) = a},

{a < f < b} = {x ∈ X : a < f(x) < b},
{f ≥ g} = {x ∈ X : f(x) ≥ g(x)},

and so forth.
If f : S → [−∞,∞] is an extended real-valued function on a domain S ⊆ R,

then f is monotone increasing on S if for all x, y ∈ S we have

x ≤ y =⇒ f(x) ≤ f(y).

We say that f is strictly increasing on S if for all x, y ∈ S,
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x < y =⇒ f(x) < f(y).

Monotone decreasing and strictly decreasing functions are defined similarly.

Notation for Extended Real-Valued and

Complex-Valued Functions

A function of the form f : X → C is said to be complex-valued. We have the
inclusions R ⊆ [−∞,∞] and R ⊆ C, so every real-valued function is both
an extended real-valued and a complex-valued function. However, neither
[−∞,∞] nor C is a subset of the other, so an extended real-valued function
need not be a complex-valued function, and a complex-valued function need
not be an extended real-valued function. Hence there are usually two separate
cases that we need to consider:

• extended real-valued functions of the form f : X → [−∞,∞], and

• complex-valued functions of the form f : X → C.

To consider both cases together, we use the notation F introduced earlier,
which stands for a choice of either the extended real line [−∞,∞] or the
complex plane C. Thus, if we write f : X → F then we mean that f could
either be an extended real-valued function or a complex-valued function on
the domain X. Both possibilities include real-valued functions as a special
case. As we declared earlier that, the word scalar means a finite real number
(if F = [−∞,∞]) or a complex number (if F = C). Thus, a scalar-valued
function cannot take the values ±∞.

Suprema and Infima

A set of real numbers S is bounded above if there exists a real number M
such that x ≤ M for every x ∈ S. Any such number M is called an upper
bound for S. The definition of bounded below is similar, and we say that S is
bounded if it is bounded both above and below.

A number x ∈ R is the supremum, or least upper bound, of S if

• x is an upper bound for S, and

• if y is any upper bound for S, then x ≤ y.

We denote the supremum of S, if one exists, by x = sup(S). The infimum, or
greatest lower bound, of S is defined in an entirely analogous manner, and is
denoted by inf(S).

It is not obvious that every set that is bounded above has a supremum.
We take the existence of suprema as the following axiom.
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Axiom (Supremum Property of R). Let S be a nonempty subset of R.
If S is bounded above, then there exists a real number x = sup(S) that is
the supremum of S. ♦

We extend the definition of supremum to sets that are not bounded above
by declaring that sup(S) = ∞ if S is not bounded above. We also declare that
sup(∅) = −∞. Using these conventions, every set S ⊆ R has a supremum in
the extended real sense.

If S = (xn)n∈N is countable, then we often write supn xn or supxn to
denote the supremum instead of sup(S), and similarly we may write infn xn

or inf xn instead of inf(S).
If (xn)n∈N and (yn)n∈N are two sequences of real numbers, then

inf
n

xn + inf
n

yn ≤ inf
n

(xn + yn) ≤ sup
n

(xn + yn) ≤ sup
n

xn + sup
n

yn.

Any or all of the inequalities on the preceding line can be strict. If c > 0 then

sup
n

cxn = c sup
n

xn and sup
n

(−cxn) = −c inf
n

xn.

Convergent and Cauchy Sequences of Scalars

Convergence of sequences will be discussed in the more general setting of
metric spaces in Section 1.1.1. Here we will only consider sequences (xn)n∈N of
real or complex numbers. We say that a sequence of scalars (xn)n∈N converges
if there exists a scalar x such that for every ε > 0 there is an N > 0 such
that

n ≥ N =⇒ |x − xn| < ε.

In this case we say that xn converges to x as n → ∞, and we write

xn → x or lim
n→∞

xn = x or lim xn = x.

We say that (xn)n∈N is a Cauchy sequence if for every ε > 0 there exists
an integer N > 0 such that

m, n ≥ N =⇒ |xm − xn| < ε. ♦

An important consequence of the Supremum Property is that the following
equivalence holds for any sequence of scalars:

(xn)n∈N is convergent ⇐⇒ (xn)n∈N is Cauchy.
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Convergence in the Extended Real Sense

Let (xn)n∈N be a sequence of real numbers. We say that the sequence (xn)n∈N

diverges to ∞ as n → ∞ if for each real number R > 0 there is an integer
N > 0 such that xn > R for all n ≥ N. In this case we write

lim
n→∞

xn = ∞.

We define divergence to −∞ similarly.
We say that limn→∞ xn exists or that (xn)n∈N converges in the extended

real sense if

• xn converges to a real number x as n → ∞, or

• xn diverges to ∞ as n → ∞, or

• xn diverges to −∞ as n → ∞.

For example, every monotone increasing sequence of real numbers (xn)n∈N

converges in the extended real sense, and in this case lim xn = supxn. Sim-
ilarly, a monotone decreasing sequence of real numbers converges in the ex-
tended real sense and its limit equals its infimum.

Limsup and Liminf

The limit superior, or limsup, of a sequence of real numbers (xn)n∈N is

lim sup
n→∞

xn = inf
n∈N

sup
m≥n

xm = lim
n→∞

sup
m≥n

xm.

Likewise, the limit inferior, or liminf, of (xn)n∈N is

lim inf
n→∞

xn = sup
n∈N

inf
m≥n

xm = lim
n→∞

inf
m≥n

xm.

The liminf and limsup of every sequence of real numbers exists in the extended
real sense. Further,

(xn)n∈N converges in

the extended real sense
⇐⇒ lim inf

n→∞
xn = lim sup

n→∞
xn,

and in this case lim xn = lim infxn = lim supxn.
If (xn)n∈N and (yn)n∈N are two sequences of real numbers, then

lim inf
n→∞

xn + lim inf
n→∞

yn ≤ lim inf
n→∞

(xn + yn)

≤ lim sup
n→∞

xn + lim inf
n→∞

yn
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≤ lim sup
n→∞

(xn + yn)

≤ lim sup
n→∞

xn + lim sup
n→∞

yn,

as long as none of the sums above takes an indeterminate form ∞ − ∞
or −∞ + ∞. Strict inequality can hold on any line above. If the sequence
(xn)n∈N converges, then

lim inf
n→∞

(xn + yn) = lim
n→∞

xn + lim inf
n→∞

yn,

and likewise

lim sup
n→∞

(xn + yn) = lim
n→∞

xn + lim sup
n→∞

yn.

If (xn)n∈N is a sequence of real numbers, then there exist subsequences
(xnk

)k∈N and (xmj
)j∈N such that

lim
k→∞

xnk
= lim sup

n→∞
xn and lim

j→∞
xmj

= lim inf
n→∞

xn.

In fact, if (xn)n∈N is bounded above then lim supxn is the largest possible
limit of a subsequence (xnk

)k∈N, and likewise if (xn)n∈N is bounded below
then lim inf xn is the smallest possible limit of a subsequence. Consequently,

lim inf
n→∞

(−xn) = − lim sup
n→∞

xn.

On occasion we deal with real-parameter versions of liminf and limsup.
Given a real-valued function f whose domain includes an interval centered
at a point x ∈ R, we define

lim sup
t→x

f(t) = inf
δ>0

sup
|t−x|<δ

f(t) = lim
δ→0

sup
|t−x|<δ

f(t),

and lim inft→x f(t) is defined analogously. The properties of these real-
parameter versions of liminf and limsup are similar to those of the sequence
versions.

Infinite Series

Infinite series in the general setting of normed spaces will be discussed in
Section 1.2.3; here we restrict our attention to infinite series of scalars. If
(cn)n∈N is a sequence of real or complex numbers, then we say that the infinite
series

∑∞
n=1 cn converges if there exists a scalar s such that the partial sums

sN =
∑N

n=1 cn converge to s as N → ∞. In this case
∑∞

n=1 cn is assigned the
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value s:
∞∑

n=1

cn = lim
N→∞

sN = lim
N→∞

N∑

n=1

cn = s.

Series of Real Numbers. Assume that every cn is a real number. Then
we say that the series

∑∞
n=1 cn converges in the extended real sense, or simply

that the series exists, if

• sN converges to a real number s as N → ∞, or

• sN diverges to ∞ as N → ∞, or

• sN diverges to −∞ as N → ∞.

Nonnegative Series. If every cn is a nonnegative real number (that is,
cn ≥ 0 for every n), then the series

∑∞
n=1 cn converges in the extended real

sense. Moreover, there are only two possibilities: Either the series converges
to a nonnegative real number or it diverges to infinity. We indicate which
possibility holds as follows:

∞∑

n=1

cn < ∞ means that the series converges (to a finite real number),

while
∞∑

n=1

cn = ∞ means that the series diverges to infinity.

Pointwise Convergence of Functions

If X is a set and {fn}n∈N is a sequence of extended real-valued or complex-
valued functions whose domain is X, then we say that fn converges pointwise
to a function f if

f(x) = lim
n→∞

fn(x) for all x ∈ X.

In this case we write fn(x) → f(x) for every x ∈ X or fn → f pointwise.
Note that this convergence can be in the extended real sense.

If {fn}n∈N is a sequence of extended real-valued functions whose domain
is a set X, then we say that {fn}n∈N is a monotone increasing sequence if
{fn(x)}n∈N is monotone increasing for each x, i.e., if

f1(x) ≤ f2(x) ≤ · · · for all x ∈ X.

In this case f(x) = limn→∞ fn(x) exists for each x ∈ X in the extended real
sense, and we say that fn increases pointwise to f . We denote this by writing

fn ր f on X.
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Continuity

Continuity for the general setting of functions on metric spaces will be dis-
cussed in Section 1.1.4. Here we define continuity for scalar-valued functions
whose domain is a subset E of Rd. We say that f : E → C is continuous on
the set E if whenever we have points xn, x ∈ E such that xn → x, it follows
that f(xn) → f(x).

Derivatives and Everywhere Differentiability

Let f be a scalar-valued function whose domain includes an open interval
centered at a point x ∈ R. We say that f is differentiable at x if the limit

f ′(x) = lim
y→x

f(y) − f(x)

y − x

exists and is a scalar.
Let [a, b] be a closed interval in the real line. A function f is everywhere

differentiable or differentiable everywhere on [a, b] if it is differentiable at each
point in the interior (a, b) and if the appropriate one-sided derivatives exist
at the endpoints a and b. That is, f is everywhere differentiable on [a, b] if

f ′(x) = lim
y→x, y∈[a,b]

f(y) − f(x)

y − x

exists and is a scalar for each x ∈ [a, b].
We use similar terminology if f is defined on other types of intervals in R.

For example, x3/2 is differentiable everywhere on [0, 1] and x1/2 is differen-
tiable everywhere on (0, 1], but x1/2 is not differentiable everywhere on [0, 1].

The Riemann Integral

Let f : [a, b] → R be a bounded, real-valued function on a finite, closed in-
terval [a, b]. A partition of [a, b] is a choice of finitely many points xk in [a, b]
such that a = x0 < x1 < · · · < xn = b. If we wish to give this partition a
name then we will write:

Let Γ =
{
a = x0 < · · · < xn = b

}
be a partition of [a, b].

The mesh size of Γ is |Γ | = max
{
xj − xj−1 : j = 1, . . . , n

}
.
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Given a partition Γ =
{
a = x0 < · · · < xn = b

}
, for each j = 1, . . . , n let

mj and Mj denote the infimum and supremum of f on the interval [xj−1, xj ]:

mj = inf
x∈[xj−1,xj ]

f(x) and Mj = sup
x∈[xj−1,xj ]

f(x).

The numbers

LΓ =

n∑

j=1

mj (xj − xj−1) and UΓ =

n∑

j=1

Mj (xj − xj−1),

are called lower and upper Riemann sums for f , respectively. We say that f
is Riemann integrable on [a, b] if there exists a real number I such that

sup
Γ

LΓ = inf
Γ

UΓ = I,

where the supremum and infimum are taken over all partitions Γ. In this
case, the number I is the Riemann integral of f over [a, b], and we write∫ b

a
f(x) dx = I.
Here is an equivalent definition of the Riemann integral. Given a partition

Γ = {a = x0 < · · · < xn = b}, choose any points ξj ∈ [xj−1, xj ]. We call

RΓ =

n∑

j=1

f(ξj) (xj − xj−1)

a Riemann sum for f (note that RΓ implicitly depends on both the partition
Γ and the choice of points ξj). Then f is Riemann integrable on [a, b] if and
only if there is a real number I such that I = lim|Γ |→0 RΓ , where this means
that for every ε > 0, there is a δ > 0 such that for any partition Γ with
|Γ | < δ and any choice of points ξj ∈ [xj−1, xj ] we have |I −RΓ | < ε. In this

case, I is the Riemann integral of f over [a, b], and we write
∫ b

a
f(x) dx = I.

We declare that a complex-valued function f on [a, b] is Riemann integrable
if its real and imaginary parts are both Riemann integrable.

Every continuous function f : [a, b] → C is Riemann integrable. However,
there exist discontinuous functions that are Riemann integrable. We will char-
acterize the Riemann integrable functions on [a, b] in Section 4.5.5.

If g : [a, b] → C is continuous, then g is Riemann integrable on the interval
[a, x] for each a ≤ x ≤ b, so we can consider the indefinite integral of g,
defined by

G(x) =

∫ x

a

g(t) dt, x ∈ [a, b].

The Fundamental Theorem of Calculus implies that G is differentiable on
the interval [a, b], and G′(x) = g(x) for each x ∈ [a, b]. We will prove a more
general form of the Fundamental Theorem of Calculus in Section 6.4.



Chapter 1

Metric and Normed Spaces

Much of real analysis centers on issues of convergence or approximation. In
this preliminary chapter we briefly review metric spaces and normed spaces,
which are sets on which we can define a notion of distance or length that
allows us to quantify the meaning of closeness or convergence. The results in
this chapter are presented in a compressed form, without the more extensive
motivation and discussion that is provided in the rest of the text. Some proofs
are assigned as exercises, and a few longer proofs are omitted. For complete
details and proofs of this material we refer to undergraduate real analysis
texts such as [Rud76], [BS11], or Chapters 2 and 3 of [Heil18].

1.1 Metric Spaces

A metric provides us with a notion of the distance between points in a set.

Definition 1.1.1 (Metric Space). Let X be a nonempty set. A metric on
X is a function d: X × X → R such that for all x, y, z ∈ X we have:

(a) Nonnegativity: 0 ≤ d(x, y) < ∞,

(b) Symmetry: d(x, y) = d(y, x),

(c) The Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z), and

(d) Uniqueness: d(x, y) = 0 if and only if x = y.

If these conditions are satisfied, then X is a called a metric space. The number
d(x, y) is called the distance from x to y. ♦

For example,

d(x, y) = ‖x − y‖ =

( d∑

k=1

|xk − yk|2
)1/2

, x, y ∈ Cd, (1.1)

15© Springer Science+Business Media, LLC, part of Springer Nature 2019
C. Heil, Introduction to Real Analysis, Graduate Texts in Mathematics 280,
https://doi.org/10.1007/978-3-030-26903-6_1
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is a metric on Cd, called the Euclidean metric. The Euclidean metric on Rd

is the restriction of equation (1.1) to x, y ∈ Rd. Unless otherwise specified,
we always assume that the metric on Rd or Cd is the Euclidean metric.

1.1.1 Convergence and Completeness

If d is a metric, then the number d(x, y) represents the distance from the
point x to the point y. We will say that points xn are converging to a point x
if the distance from xn to x shrinks to zero as n increases. Closely related
is the idea of a Cauchy sequence, which is a sequence where the distance
d(xm, xn) between two points in the sequence decreases as m and n increase.

Definition 1.1.2 (Convergent and Cauchy Sequences). Let X be a
metric space.

(a) A sequence of points {xn}n∈N in X converges to a point x ∈ X if

lim
n→∞

d(xn, x) = 0.

That is, for every ε > 0 there must exist some integer N > 0 such that

n ≥ N =⇒ d(xn, x) < ε.

In this case, we write xn → x.

(b) A sequence of points {xn}n∈N in X is a Cauchy sequence if for every ε > 0

there exists an integer N > 0 such that

m, n ≥ N =⇒ d(xm, xn) < ε. ♦

Convergence implicitly depends on the choice of metric for X, so if we want
to emphasize that we are using a particular metric, we may write xn → x
with respect to the metric d.

By applying the Triangle Inequality, we immediately obtain the following
relation between convergent and Cauchy sequences.

Lemma 1.1.3 (Convergent Implies Cauchy). If {xn}n∈N is a convergent
sequence in a metric space X, then {xn}n∈N is a Cauchy sequence in X. ♦

Some metric spaces have the property that every Cauchy sequence in the
space converges to an element of the space. Since we can test whether a
sequence is Cauchy without having the limit vector x in hand, this is often
very useful. We give such spaces the following name.

Definition 1.1.4 (Complete Metric Space). Let X be a metric space. If
every Cauchy sequence in X converges to an element of X, then we say that
X is complete. ♦



1.1 Metric Spaces 17

For example, the real line R and the complex plane C are complete (with
respect to the usual metric d(x, y) = |x−y|), and it follows from this that Rd

and Cd are complete with respect to the Euclidean metric. In contrast, the
set of rational numbers Q is not complete with respect to the metric d(x, y) =
|x − y|. For example, if we set x1 = 3.1, x2 = 3.14, x3 = 3.141, x4 = 3.1415,
and so forth (truncating the decimal expansion of π = 3.14159 . . . ), then
(xn)n∈N is a Cauchy sequence in Q, but it does not converge to an element
of Q (it does converge to π, but π does not belong to Q). An example of an
incomplete infinite-dimensional normed space is given in Problem 1.3.8.

1.1.2 Topology in Metric Spaces

Since a metric space has a notion of distance, we can define an open ball to be
the set of all points that lie within a distance r of a point x. Using open balls
we then define open and closed sets, accumulation points, boundary points,
and other useful notions.

Definition 1.1.5. Let X be a metric space.

• Given x ∈ X and r > 0, the open ball in X centered at x with radius r is

Br(x) =
{
y ∈ X : d(x, y) < r

}
.

• A set E ⊆ X is bounded if E ⊆ Br(x) for some x ∈ X and r > 0.

• A set U ⊆ X is open if for each x ∈ U there exists an r > 0 such that
Br(x) ⊆ U. Equivalently, U is open if and only if U can be written as a
union of open balls.

• The topology of X is the set of all open subsets of X.

• The interior of a set E ⊆ X is the largest open set E◦ that is contained
in E. Explicitly, E◦ =

S

{
U ⊆ X : U is open and U ⊆ E

}
.

• A set E ⊆ X is closed if X \E is open.

• The closure of a set E ⊆ X is the smallest closed set E that contains E.
Explicitly, E =

T

{
F ⊆ X : F is closed and E ⊆ F

}
.

• A set E ⊆ X is dense in X if E = X.

• X is separable if there exists a countable subset of X that is dense.

• A point x ∈ X is an accumulation point or cluster point of a set E ⊆ X if
there exist xn ∈ E with all xn 6= x such that xn → x.

• A point x ∈ X is a boundary point of a set E ⊆ X if for every r > 0 we
have both Br(x) ∩ E 6= ∅ and Br(x) ∩ EC 6= ∅. The set of all boundary
points of E is called the boundary of E, and it is denoted by ∂E. ♦
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The reader should check that the empty set ∅ and the entire space X
are open, the union of any collection of open subsets of X is open, and the
intersection of finitely many open sets is open (it is these three properties that
are the inspiration for the definition of a topology in an abstract setting).

The following exercise gives an equivalent characterization of closed sets
in terms of limits of points of E.

Exercise 1.1.6. Let E be a subset of a metric space X. Prove that E is
closed if and only if the following statement holds:

If xn ∈ E and xn → x ∈ X, then x ∈ E. ♦

Here are some further useful facts.

Exercise 1.1.7. Given a subset E of a metric space X, prove the following
statements.

(a) E =
{
y ∈ X : there exist xn ∈ E such that xn → y

}
.

(b) E is dense in X if and only if for every point x ∈ X there exist points
xn ∈ E such that xn → x. ♦

To summarize Exercises 1.1.6 and 1.1.7:

• E is closed if and only if it contains every limit of points from E,

• the closure of E is the set of all limits of points from E, and

• E is dense in X if and only if every point in X is a limit of points from E.

For example, the set of rationals Q is not closed in X = R because a limit
of rational points need not be rational; the closure of Q is R because every
point in R can be written as a limit of rational points; and Q is dense in R

because every point in R can be written as a limit of rational points.

1.1.3 Compact Sets in Metric Spaces

Next we introduce compact sets, which are defined in terms of “coverings” of
a set by open sets. By a cover of a set S, we mean a collection of sets {Ei}i∈I

whose union contains S. If each set Ei is open, then we call {Ei}i∈I an open
cover of S. The index set I may be finite or infinite (even uncountable). If I
is finite then we call {Ei}i∈I a finite cover of S. Thus a finite open cover of S
is a collection of finitely many open sets whose union contains S.

Definition 1.1.8 (Compact Set). A subset K of a metric space X is com-
pact if every covering of K by open sets has a finite subcovering. That is, K
is compact if it is the case that whenever

K ⊆
⋃
i∈I

Ui,
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where {Ui}i∈I is any collection of open subsets of X, then there exist finitely
many indices i1, . . . , iN ∈ I such that K ⊆ Ui1 ∪ · · · ∪ UiN

. ♦

In order to give an equivalent reformulation of compactness, we introduce
the following terminology.

Definition 1.1.9 (Sequentially Compact Set). A subset K of a metric
space X is sequentially compact if every sequence {xn}n∈N of points of K
contains a convergent subsequence {xnk

}k∈N whose limit belongs to K. ♦

In an abstract topological space the notions of compactness and sequential
compactness need not be the same. However, they do coincide in metric
spaces. We state this as the following theorem; for one proof see [Heil18,
Thm. 2.8.9].

Theorem 1.1.10. If K is a subset of a metric space X, then

K is compact ⇐⇒ K is sequentially compact. ♦

We prove that compact sets in metric spaces are both closed and bounded.

Lemma 1.1.11. If K is a compact subset of a metric space X, then K is
closed and bounded.

Proof. Suppose K is compact, and fix x ∈ X. The union of the open balls
Bn(x) over all n ∈ N covers X, so this cover must have a finite subcover
{Bn1

(x), . . . , BnM
(x)}. Choosing the ball of largest radius from this finite

subcover, we see that K is contained in a single open ball and hence is
bounded.

Now we show that K is closed. If K = X then K is closed and we are
done, so assume that K 6= X. Choose any point y ∈ KC = X\K. If x ∈ K
then x 6= y, so by the Hausdorff property stated in Problem 1.1.19 there exist
disjoint open sets Ux and Vx such that x ∈ Ux and y ∈ Vx. The collection
{Ux}x∈K is an open cover of K, so it must contain some finite subcover, say

K ⊆ Ux1
∪ · · · ∪ UxN

.

Each Vxj
is disjoint from Uxj

, so V = Vx1
∩ · · · ∩ VxN

is entirely contained in
the complement of K. Thus, V is an open set and y ∈ V ⊆ KC. This implies
that KC is open, and therefore K is closed. ⊓⊔

The converse of Lemma 1.1.11 need not hold. That is, in some metric
spaces there exist sets that are closed and bounded but not compact; Problem
1.3.10 gives an example. However, for Euclidean space we have the following
classical result (for one proof, see [Heil18, Thm. 2.8.4]).

Theorem 1.1.12 (Heine–Borel Theorem). If K is a subset of Rd or Cd,
then K is compact if and only if K is closed and bounded. ♦
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1.1.4 Continuity for Functions on Metric Spaces

In abstract topological spaces, continuity is defined in terms of inverse images
of open sets. We give that definition next, for the setting of functions on
metric spaces.

Definition 1.1.13 (Continuous Function). Let X and Y be metric spaces.
We say that a function f : X → Y is continuous if for every open set V ⊆ Y,
its inverse image f−1(V ) is an open subset of X. ♦

In contrast, the direct image of an open set under a continuous function
need not be open (for example, if f(x) = sin x then f(0, 2π) = [−1, 1]).
Likewise, the direct image of a closed set under a continuous function need not
be closed. Even so, the following exercise shows that a continuous functions
maps compact sets to compact sets.

Exercise 1.1.14. Let X and Y be metric spaces, and assume that f : X → Y
is continuous. Prove that if K is a compact subset of X, then f(K) is a
compact subset of Y. ♦

The next exercise gives a useful reformulation of continuity for functions
on metric spaces in terms of preservation of limits.

Exercise 1.1.15. Let X be a metric space with metric dX , and let Y be a
metric space with metric dY . Given a function f : X → Y, prove that the
following three statements are equivalent.

(a) f is continuous.

(b) If x is any point in X, then for every ε > 0 there exists a δ > 0 such that
for all y ∈ X we have

dX(x, y) < δ =⇒ dY

(
f(x), f(y)

)
< ε.

(c) If x ∈ X and {xn}n∈N is any sequence of points in X, then

xn → x in X =⇒ f(xn) → f(x) in Y. ♦

The number δ that appears in statement (b) of Exercise 1.1.15 depends
on both the point x and the number ε. If δ can be chosen independently of x,
then we say that f is uniformly continuous.

Definition 1.1.16 (Uniform Continuity). Let X be a metric space with
metric dX , and let Y be a metric space with metric dY . If E ⊆ X, then we
say that a function f : E → Y is uniformly continuous on E if for every ε > 0
there exists a δ > 0 such that for all x and y in E we have

dX(x, y) < δ =⇒ dY

(
f(x), f(y)

)
< ε. ♦
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According to the next result, a continuous function whose domain is a
compact set is uniformly continuous on that set (for one proof, see [Heil18,
Lemma 2.9.6]).

Theorem 1.1.17. Let X and Y be metric spaces. If K ⊆ X is compact
and f : K → Y is continuous, then f is bounded and uniformly continuous
on K. ♦

Problems

1.1.18. Given that R and C are complete, prove that Rd and Cd are complete
with respect to the Euclidean metric.

1.1.19. Let X be a metric space.

(a) Prove that X is Hausdorff, i.e., if x 6= y are two distinct elements of X,
then there exist disjoint open sets U and V such that x ∈ U and y ∈ V.

(b) Prove that the limit of a convergent sequence in X is unique, i.e., if
xn → y and xn → z then y = z.

1.1.20. Assume {xn}n∈N is a Cauchy sequence in a metric space X, and there
exists a subsequence {xnk

}k∈N that converges to x ∈ X. Prove that xn → x.

1.1.21. Given a sequence {xn}n∈N in a metric space X, prove the following
statements.

(a) If d(xn, xn+1) < 2−n for every n ∈ N, then {xn}n∈N is Cauchy (and
therefore converges if X is complete).

(b) If {xn}n∈N is Cauchy, then there exists a subsequence {xnk
}k∈N such

that d(xnk
, xnk+1

) < 2−k for each k ∈ N.

1.1.22. Let {xn}n∈N be a sequence of points in a metric space X. Prove that
xn → x if and only if for every subsequence {yn}n∈N of {xn}n∈N there exists
a subsequence {zn}n∈N of {yn}n∈N such that zn → x.

1.1.23. Let X be a metric space. Extend the definition of convergence to
families indexed by a real parameter by declaring that if x ∈ X and xt ∈ X
for t in the interval (0, c), where c > 0, then xt → x as t → 0+ if for every
ε > 0 there exists a δ > 0 such that d(xt, x) < ε whenever 0 < t < δ. Show
that xt → x as t → 0+ if and only if xtk

→ x for every sequence of real
numbers {tk}k∈N in (0, c) that satisfy tk → 0.

1.1.24. We say that a function f : Rd → R is upper semicontinuous (abbrevi-
ated usc) at a point x ∈ Rd if lim supy→x f(y) ≤ f(x). Explicitly, this means
that for every ε > 0, there exists a δ > 0 such that

|x − y| < δ =⇒ f(y) ≤ f(x) + ε.
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An analogous definition is made for lower semicontinuity (lsc). Prove the
following statements.

(a) If g : Rd → R and r > 0, then h(x) = inf
{
g(y) : y ∈ Br(x)

}
is usc at

every point where h(x) 6= −∞.

(b) If f : Rd → R, then f is continuous at x if and only if f is both usc
and lsc at x.

(c) If {fi}i∈I is a family of functions that are each usc at a point x, then
g = infi∈I fi is usc at x.

(d) f : Rd → R is usc at every point x ∈ Rd if and only if the set
f−1[a,∞) = {x ∈ Rd : f(x) ≥ a} is closed for each a ∈ R. Likewise, f
is lsc at every point x if and only if f−1(a,∞) = {x ∈ Rd : f(x) > a} is open
for each a ∈ R.

(e) If K is a compact subset of Rd and f : Rd → R is usc at every point
of K, then f is bounded above on K.

1.2 Normed Spaces

1.2.1 Vector Spaces

We assume that the reader is familiar with vector spaces. The scalar field
associated with the vector spaces in this volume will always be either the real
line R or the complex plane C. The elements of the scalar field are referred
to as scalars. If X is a vector space and we choose the scalar field to be R

then we say that X is a real vector space, while if we choose the scalar field
to be C then we say that X is a complex vector space.

We recall the definition of a spanning set and an independent set in a
vector space.

Definition 1.2.1 (Span and Independence). Let X be a vector space,
let I be an index set, and let F = {xi}i∈I be a sequence of vectors in X.

(a) The finite linear span of F = {xi}i∈I , or simply the span for short, is the
set of all finite linear combinations of elements of F :

span(F) = span{xi}i∈I =

{ N∑

n=1

cnxin
: N > 0, in ∈ I, cn is a scalar

}
.

(b) We say that F = {xi}i∈I is finitely linearly independent, or simply in-
dependent for short, if for every choice of finitely many distinct indices
i1, . . . , iN ∈ I, we have

N∑

n=1

cnxin
= 0 =⇒ c1 = · · · = cN = 0. ♦
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Next we recall the definition of a basis for a vector space. To distinguish
this from the related of notion of a Schauder basis for a Banach space (which
will be discussed in Chapter 8), we will refer to the usual vector space notion
of a basis as a Hamel basis.

Definition 1.2.2 (Hamel Basis). Let X be a vector space. A Hamel basis,
vector space basis, or simply a basis for X is a set B ⊆ X such that B is
finitely linearly independent and span(B) = X. ♦

The standard basis for Rd or Cd is the Hamel basis B = {e1, . . . , ed}, where
ek = (0, . . . , 0, 1, 0, . . . , 0) has a 1 in the kth component and zeros elsewhere.

1.2.2 Seminorms and Norms

While a metric provides us with a notion of the distance between points in a
space, a norm gives us a notion of the length of an individual vector. A norm
can only be defined on a vector space, while a metric can be defined on any
set.

Definition 1.2.3 (Seminorms and Norms). Let X be a vector space. A
seminorm on X is a function ‖ · ‖ : X → R such that for all vectors x, y ∈ X
and all scalars c we have:

(a) Nonnegativity: 0 ≤ ‖x‖ < ∞,

(b) Homogeneity: ‖cx‖ = |c| ‖x‖, and

(c) The Triangle Inequality: ‖x + y‖ ≤ ‖x‖ + ‖y‖.
A seminorm is a norm if we also have:

(d) Uniqueness: ‖x‖ = 0 if and only if x = 0.

A vector space X together with a norm ‖·‖ is called a normed vector space,
a normed linear space, or simply a normed space. We refer to the number ‖x‖
as the length of the vector x, and we say that ‖x−y‖ is the distance between
the vectors x and y. ♦

If X is a normed space, then it follows directly that

d(x, y) = ‖x − y‖, x, y ∈ X,

defines a metric on X (called the metric on X induced from ‖ · ‖, or simply
the induced metric on X). Consequently, whenever we are given a normed
space X, we have a metric on X as well. Therefore all of the definitions we
made for metric spaces also apply to normed spaces, using the induced norm
d(x, y) = ‖x− y‖. For example, convergence in a normed space is defined by

xn → x ⇐⇒ lim
n→∞

‖x − xn‖ = 0.
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It may be possible to place a metric on X other than the induced metric,
but unless we explicitly state otherwise, all metric-related statements on a
normed space are taken with respect to the induced metric.

The Euclidean norm ‖x‖ =
(
|x1|2 + · · ·+ |xd|2

)1/2
is a norm on Rd and Cd.

The metric induced from the Euclidean norm is the Euclidean metric defined
in equation (1.1).

Here are some properties of norms.

Exercise 1.2.4. Let X be a normed space, and let x, y, xn, and yn denote
elements of X. Prove that the following statements hold.

(a) Reverse Triangle Inequality:
∣∣‖x‖ − ‖y‖

∣∣ ≤ ‖x − y‖.
(b) Convergent implies Cauchy: If xn → x, then {xn}n∈N is Cauchy.

(c) Boundedness of Cauchy sequences: If {xn}n∈N is a Cauchy sequence, then
sup ‖xn‖ < ∞.

(d) Continuity of the norm: If xn → x, then ‖xn‖ → ‖x‖.
(e) Continuity of vector addition: If xn → x and yn → y, then xn+yn → x+y.

(f) Continuity of scalar multiplication: If xn → x and cn → c (where cn and
c are scalars), then cnxn → cx. ♦

Every convergent sequence is Cauchy, but the converse need not hold. Still,
in some normed spaces it happens that every Cauchy sequence in the space
converges to an element of the space. We give such spaces the following name.

Definition 1.2.5 (Banach Space). Let X be a normed space. If every
Cauchy sequence in X converges to an element of X, then we say that X
is complete, and in this case we also say that X is a Banach space. ♦

The real line and the complex plane are complete, and likewise Rd and Cd

are Banach spaces with respect to the Euclidean norm.

1.2.3 Infinite Series in Normed Spaces

We define infinite series in a normed space as follows.

Definition 1.2.6 (Convergent Series). Let {xn}n∈N be a sequence of vec-

tors in a normed space X. We say that the series
∑∞

n=1 xn converges and

equals x ∈ X if the partial sums sN =
∑N

n=1 xn converge to x, i.e., if

lim
N→∞

‖x − sN‖ = lim
N→∞

∥∥∥∥x −
N∑

n=1

xn

∥∥∥∥ = 0.

In this case, we write x =
∑∞

n=1 xn, and we also use the shorthands x =
∑

xn

or x =
∑

n xn. ♦
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In order for an infinite series to converge in X, the norm of the difference
between x and the partial sum sN must converge to zero. If we wish to
emphasize which norm we are referring to, we may write that x =

∑
xn

converges with respect to ‖ · ‖, or we may say that x =
∑

xn converges in X.
If {xn}n∈N is a sequence of vectors in X, then {‖xn‖}n∈N is a sequence of

real scalars. What connection, if any, is there between the convergence of the
series

∑
xn in X (which is a series of vectors) and convergence of the series∑ ‖xn‖ (which is a series of scalars)? In order to address this, we introduce

the following terminology.

Definition 1.2.7. Let {xn}n∈N be a sequence in a normed space X. We say
that the series

∑∞
n=1 xn is absolutely convergent if

∑∞
n=1 ‖xn‖ < ∞. ♦

A convergent series need not converge absolutely. For example, consider
X = R and xn = (−1)n/n. The alternating harmonic series

∑∞
n=1 (−1)n/n

converges, but the harmonic series
∑∞

n=1 1/n does not.
Also, a series that converges absolutely need not converge. One example in

the incomplete space X = Cc(R) is constructed in Problem 1.3.11. The next
theorem states that if X is complete then every absolutely convergent series
in X must converge. Moreover, the converse also holds: In any incomplete
normed space there exists a series that converges absolutely yet does not
converge, i.e., there exist vectors xn ∈ X such that

∑ ‖xn‖ < ∞ but
∑

xn

does not converge.

Theorem 1.2.8. If X is a normed space, then the following two statements
are equivalent.

(a) X is complete (i.e., X is a Banach space).

(b) Every absolutely convergent series in X converges in X. That is, if
{xn}n∈N is a sequence in X and

∑ ‖xn‖ < ∞, then the series
∑

xn

converges in X.

Proof. (a) ⇒ (b). We assign the proof of this implication to the reader.

(b) ⇒ (a). Suppose that every absolutely convergent series in X is con-
vergent. Let {xn}n∈N be a Cauchy sequence in X. Appealing to Problem
1.1.21, there exists a subsequence {xnk

}k∈N such that ‖xnk+1
− xnk

‖ < 2−k

for every k ∈ N. Consequently, the series
∑∞

k=1 (xnk+1
− xnk

) is abso-
lutely convergent. Therefore, by hypothesis, this series converges in X. Let
x =

∑∞
k=1 (xnk+1

− xnk
). Then, by definition, the partial sums

sM =
M∑

k=1

(xnk+1
− xnk

) = xnM+1
− xn1

converge to x as M → ∞. Let y = x + xn1
. Then, since n1 is fixed,

xnM
= sM−1 + xn1

→ x + xn1
= y as M → ∞.
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Thus {xn}n∈N is a Cauchy sequence that has a subsequence {xnk
}k∈N that

converges to the vector y. Appealing now to Problem 1.1.20, this implies that
xn → y. Hence every Cauchy sequence in X converges, so X is complete. ⊓⊔

1.2.4 Equivalent Norms

A vector space X can have many different norms. Some of these norms may
be “comparable” in the following sense.

Definition 1.2.9 (Equivalent Norms). We say that two norms ‖ · ‖a and
‖·‖b on a vector space X are are equivalent if there exist constants C1, C2 > 0
such that

C1 ‖x‖a ≤ ‖x‖b ≤ C2 ‖x‖a, for all x ∈ X. ♦

The reader should show that if two norms are equivalent, then they deter-
mine the same convergence criterion, i.e.,

lim
n→∞

‖x − xn‖a = 0 ⇐⇒ lim
n→∞

‖x − xn‖b = 0. (1.2)

Conversely, if equation (1.2) holds, then ‖ · ‖a and ‖ · ‖b are equivalent (for
one proof of this, see [Heil18, Thm. 3.6.2]).

We have the following important fact for finite-dimensional spaces (see
[Heil18, Thm. 3.7.2]).

Theorem 1.2.10. If X is a finite-dimensional vector space, then any two
norms on X are equivalent. ♦

One consequence of Theorem 1.2.10 is that all finite-dimensional subspaces
of a normed space are closed (see [Heil18, Cor. 3.7.3]).

Problems

1.2.11. Let X be a normed space. Prove that every open ball Br(x) in X is
convex, i.e., if x, y ∈ Br(x) and 0 ≤ t ≤ 1, then ty + (1 − t)z ∈ Br(x).

1.2.12. Let Y be a subspace of a Banach space X, and let the norm on Y be
the norm on X restricted to the set Y. Prove that Y is a Banach space with
respect to this norm if and only if Y is a closed subset of X.

1.2.13. Assume that
∑∞

n=1 xn is a convergent infinite series in a normed
space X. Prove that
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∥∥∥∥
∞∑

n=1

xn

∥∥∥∥ ≤
∞∑

n=1

‖xn‖.

Note that the right-hand side of this inequality could be ∞.

1.2.14. Let X be a normed space. We define the closed span of a set S ⊆ X
to be the closure of the span of S, and we denote this closed span by span(S).
Prove that span(S) is the smallest closed subspace of X that contains S. That
is, span(S) is a closed subspace of X, and if M is any other closed subspace
such that S ⊆ M, then span(S) ⊆ M.

1.3 The Uniform Norm

Let X be a metric space. Recall from the Preliminaries that we let the symbol
F denote a choice of [−∞,∞] or C. We let C(X) be the vector space that
consists of all continuous, scalar-valued functions on X. Specifically, if F = C,
then C(X) is the set of continuous, complex-valued functions on X, while if
F = [−∞,∞], then C(X) is the set of continuous, real-valued functions on X
(we do not allow functions in C(X) to take the values ±∞). We let Cb(X)
be the subspace of all bounded continuous functions on X:

Cb(X) =
{
f ∈ C(X) : f is bounded

}
.

If X is compact, then Theorem 1.1.17 implies that Cb(X) = C(X).
To avoid multiplicities of brackets and parentheses, if X = (a, b) then we

usually write C(a, b) instead of C((a, b)), if X = [a, b) then we write C[a, b)
instead of C([a, b)), and so forth.

In order to define a norm on Cb(X), we introduce the following terminol-
ogy.

Definition 1.3.1 (Uniform Norm). Let X be a metric space. The uniform
norm of a function f : X → F is

‖f‖u = sup
x∈X

|f(x)|. ♦ (1.3)

Note that ‖f‖u is defined for every function on X, although ‖f‖u = ∞ if f
is unbounded. Therefore ‖f‖u < ∞ for all f ∈ Cb(X), and the reader should
check that ‖ · ‖u is a norm on Cb(X) in the sense of Definition 1.2.3. Hence
Cb(X) is a normed vector space.

Convergence with respect to the uniform norm is called uniform conver-
gence. That is, fn converges uniformly to f if

lim
n→∞

‖f − fn‖u = lim
n→∞

(
sup
x∈X

|f(x) − fn(x)|
)

= 0.
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If fn → f uniformly, then for each x ∈ X we have that fn(x) → f(x) as
n → ∞. Thus uniform convergence implies pointwise convergence. However,
pointwise convergence does not imply uniform convergence in general (see
Example 3.4.1).

The following exercise shows that the uniform limit of a sequence of
bounded continuous functions is itself bounded and continuous.

Exercise 1.3.2. Let X be a metric space. Prove that if functions fn ∈ Cb(X)
converge uniformly to a function f : X → F, then f ∈ Cb(X). ♦

To illustrate a typical completeness argument, we will prove that Cb(X)
is complete with respect to the uniform norm (for a more challenging com-
pleteness exercise, see Problem 1.4.5).

Theorem 1.3.3 (Cb(X) Is Complete). Let X be a metric space. If {fn}n∈N

is a sequence in Cb(X) that is Cauchy with respect to ‖ · ‖u, then there exists
a function f ∈ Cb(X) such that fn converges uniformly to f. Consequently
Cb(X) is a Banach space with respect to the uniform norm.

Proof. Assume that {fn}n∈N is Cauchy with respect to the uniform norm. If
we fix one particular point x ∈ X, then for all m and n we have |fm(x) −
fn(x)| ≤ ‖fm − fn‖u. It follows that {fn(x)}n∈N is a Cauchy sequence of
scalars. Since R and C are complete, this sequence of scalars must converge.
Define f(x) = limn→∞ fn(x). By construction, fn converges pointwise to f.
We will show that fn converges uniformly to f.

Choose any ε > 0. Then there exists an N such that ‖fm − fn‖u < ε for
all m, n ≥ N. Therefore, if n ≥ N, then for every x ∈ X we have

|f(x) − fn(x)| = lim
m→∞

|fm(x) − fn(x)| ≤ lim sup
m→∞

‖fm − fn‖u ≤ ε.

Taking the supremum over all x ∈ X, we see that ‖f − fn‖u ≤ ε whenever
n ≥ N, so fn → f uniformly. Therefore f ∈ Cb(X) by Exercise 1.3.2. Thus
every uniformly Cauchy sequence in Cb(X) converges uniformly to a function
in Cb(X), so we conclude that Cb(X) is complete with respect to the uniform
norm. ⊓⊔

1.3.1 Some Function Spaces

We will define several vector spaces of functions whose domain is Rd. We have
already seen C(Rd), the space of continuous functions on Rd, and Cb(R

d),
the space of bounded continuous functions on Rd.

We say that f : Rd → F vanishes at infinity if lim‖x‖→∞ f(x) = 0. Pre-
cisely, this means that if ε > 0 is given, then there exists some R > 0 such
that |f(x)| < ε for all x with ‖x‖ ≥ R. The space of continuous functions
that vanish at infinity is
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C0(R
d) =

{
f ∈ C(Rd) : lim

‖x‖→∞
f(x) = 0

}
.

The support of a continuous function f on Rd is the closure in Rd of the
set of points where f is nonzero:

supp(f) = {x ∈ Rd : f(x) 6= 0}.

We say that f has compact support if supp(f) is a compact set. Since supp(f)
is a closed subset of Rd (by definition), the Heine–Borel Theorem implies that
supp(f) is compact if and only if it is bounded. Hence,

f has compact support ⇐⇒ f is zero outside of some ball Br(0).

The space of continuous functions with compact support is

Cc(R
d) =

{
f ∈ C(Rd) : supp(f) is compact

}
.

We have the inclusions Cc(R
d) ( C0(R

d) ( Cb(R
d) ( C(Rd). Theorem 1.3.3

showed that Cb(R
d) is complete with respect to the uniform norm. According

to Problems 1.3.7 and 1.3.8, C0(R
d) is also complete with respect to the

uniform norm, while Cc(R
d) is not.

We define some related spaces of differentiable functions. Given an integer
m ≥ 0, we let Cm(R) denote the space of m-times differentiable functions
f on R such that f, f ′, . . . , f (m) are all continuous. Cm

b (R) denotes the sub-
space that consists of those functions f ∈ Cm(R) such that f, f ′, . . . , f (m)

are bounded, and Cm
c (R) is the space of functions f ∈ Cm(R) that have com-

pact support. C∞(R) is the space of infinitely differentiable functions on R,
and C∞

c (R) is the subspace of infinitely differentiable, compactly supported
functions.

We also state a classical result on the approximation of continuous func-
tions by polynomials on a finite interval. There are many different proofs of
this theorem; one can be found in [Heil18, Thm. 4.6.2].

Theorem 1.3.4 (Weierstrass Approximation Theorem). Let [a, b] be a
finite closed interval. If f ∈ C[a, b] and ε > 0, then there exists a polynomial
p(x) =

∑n
k=0 ckxk such that

‖f − p‖u = sup
x∈[a,b]

|f(x) − p(x)| < ε. ♦

Problems

1.3.5. Let I be an interval in R. For each k ≥ 0, define pk(x) = xk. Prove
that {pk}k≥0 is a linearly independent set in C(I).
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1.3.6. Prove that f : Rd → C is uniformly continuous on Rd if and only if

lim
a→0

‖Taf − f‖u = 0,

where Taf(x) = f(x − a) denotes the translation of f by a ∈ Rd.

1.3.7. Prove that C0(R) is a Banach space with respect to the uniform norm.
Show that every function in C0(R) is uniformly continuous, and exhibit a
function in Cb(R) that is not uniformly continuous.

Fig. 1.1 A function g and a compactly supported approximation gn.

1.3.8. Let g ∈ C0(R) be any function that does not belong to Cc(R). For each
integer n > 0, define a compactly supported approximation to g by setting
gn(x) = g(x) for |x| ≤ n and gn(x) = 0 for |x| > n+1, and let gn be linear on
[n, n + 1] and [−n− 1,−n] (see Figure 1.1). Show that {gn}n∈N is Cauchy in
Cc(R) with respect to the uniform norm, but it does not converge uniformly
to any function in Cc(R). Conclude that Cc(R) is not complete with respect
to ‖ · ‖u, and is not a closed subset of C0(R).

1.3.9. Prove that Cc(R) is a dense subspace of C0(R) with respect to the
uniform norm. That is, show that if g ∈ C0(R), then there exist functions
gn ∈ Cc(R) such that gn → g uniformly.

1.3.10. The unit disk D in Cb(R) is the set of all functions in Cb(R) whose
uniform norm is at most 1, i.e., D = {f ∈ Cb(R) : ‖f‖u ≤ 1}.

(a) Prove that D is a closed and bounded subset of Cb(R).

(b) The hat function or tent function on the interval [−1, 1] is

W (x) = max
{
1 − |x|, 0

}
=





1 − x, if 0 ≤ x ≤ 1,

1 + x, if − 1 ≤ x ≤ 0,

0, if |x| ≥ 1.

Let fk(x) = W (x − k). Observe that ‖fk‖u = 1, so the sequence {fk}k∈N is
contained in the unit disk D. Prove that {fk}k∈N is not a Cauchy sequence
and contains no Cauchy subsequences.
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(c) Prove that D is not a compact subset of Cb(R).

1.3.11. Consider Cc(R), which is a normed space with respect to the uni-
form norm. Let W be the hat function defined in Problem 1.3.10, and let
gk(x) = 2−k W (2−kx). Using the uniform norm, prove that the series

∑∞
k=1 gk

converges absolutely in Cc(R), but it does not converge in Cc(R). What hap-
pens if we replace Cc(R) with C0(R)?

1.4 Hölder and Lipschitz Continuity

Sometimes we deal with functions that are “better than continuous” yet
are “not quite differentiable.” The next definition gives one way to quantify
behavior that lies between continuity and differentiability.

Definition 1.4.1 (Hölder and Lipschitz Continuous Functions). Let I
be an interval in the real line, and let f : I → C be a function on I.

(a) We say that f is Hölder continuous on I with exponent α > 0 if there
exists a constant K ≥ 0 such that

|f(x) − f(y)| ≤ K |x − y|α, for all x, y ∈ I.

(b) If f is Hölder continuous with exponent α = 1, then we say that f is
Lipschitz continuous on I, or simply that f is Lipschitz. That is, f is
Lipschitz if there exists a constant K ≥ 0 such that

|f(x) − f(y)| ≤ K |x − y|, for all x, y ∈ I.

A number K for which this holds is called a Lipschitz constant for f. ♦

By using the Mean Value Theorem, we can see that any function f : I → C

that is differentiable everywhere on I and has a bounded derivative f ′ is
Lipschitz on I (this is Problem 1.4.2). However, a Lipschitz function need
not be differentiable at every point. For example, f(x) = |x| is Lipschitz on
[−1, 1] but it is not differentiable at x = 0.

Lipschitz functions will appear frequently in the text. In Chapter 5 we
will prove that every Lipschitz function on [a, b] has bounded variation and
is absolutely continuous. We will encounter Hölder continuous functions with
exponents α < 1 less frequently. The Cantor–Lebesgue function, which will be
introduced in Section 5.1, is one important example of a Hölder continuous
function that is not Lipschitz.
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Problems

1.4.2. Let I be an interval. Show that if f : I → C is differentiable everywhere
on I and f ′ is bounded on I, then f is Lipschitz on I.

Remark: The Mean Value Theorem is directly applicable if f is real-valued.
However, the MVT does not hold for complex-valued functions, e.g., consider
f(x) = eix on [0, 2π].

1.4.3. Define h : [−1, 1] → R by h(x) = x2 sin 1
x if x 6= 0, and h(0) = 0. Prove

that h is Lipschitz on [−1, 1].

1.4.4. Prove the following statements.

(a) If f is Hölder continuous on an interval I for some exponent α > 0,
then f is uniformly continuous on I.

(b) If f is Hölder continuous on an interval I for some exponent α > 1,
then f is constant on I.

(c) The function f(x) = |x|1/2 is Hölder continuous on [−1, 1] for exponents
0 < α ≤ 1/2, but not for any exponent α > 1/2.

(d) The function g defined by g(x) = −1/ ln x for x > 0 and g(0) = 0
is uniformly continuous on [0, 1/2], but it is not Hölder continuous for any
exponent α > 0.

1.4.5. Let I be an interval in R.

(a) Fix 0 < α < 1, and let Cα(I) be the space of all bounded functions
that are Hölder continuous with exponent α on I, i.e.,

Cα(I) =
{
f ∈ Cb(I) : f is Hölder continuous with exponent α

}
.

Show that the following is a norm on Cα(I), and Cα(I) is a Banach space
with respect to this norm:

‖f‖Cα = ‖f‖u + sup
x6=y

|f(x) − f(y)|
|x − y|α .

(b) To avoid confusion with the space C1(I), which consists of those differ-
entiable functions on I whose derivative is continuous, we let Lip(I) denote
the space of bounded functions that are Lipschitz on I. Extend the results of
part (a) to to Lip(I).



Chapter 2

Lebesgue Measure

We know how to determine the volume of cubes, rectangles, spheres, and
some other special subsets of Rd. Does every subset of Rd have a volume?
We are tempted to believe that each set E ⊆ Rd can be assigned a unique
“volume” or “measure” |E| in such a way that the following properties hold:

(i) 0 ≤ |E| ≤ ∞,

(ii) the measure of the unit cube Q = [0, 1]d is |Q| = 1,

(iii) if E1, E2, . . . are finitely or countably many disjoint subsets of Rd,
then ∣∣∣

⋃
k

Ek

∣∣∣ =
∑

k

|Ek|,

(iv) |E + h| = |E| for all h ∈ Rd.

We will prove in Section 2.4 that there is no way to define |E| so that all four
conditions (i)–(iv) simultaneously hold for every set E ⊆ Rd! (This turns out
to be a consequence of the Axiom of Choice; see Theorem 2.4.4.) Even so,
we will prove in this chapter that if we relax our goal of defining a volume
for every subset of Rd, then we can create a useful definition of measure that
satisfies properties (i)–(iv) for a very large class of subsets of Rd. This class of
“good sets,” which we will call the measurable subsets of Rd, includes almost
every set that we ever encounter in practice. The “volume” |E| that we will
define is called the Lebesgue measure of the set E; we will show that it is
well-defined and “nicely behaved” on the class of measurable subsets of Rd.

The creation of Lebesgue measure is a two-step process, broadly outlined
as follows. First, we start with a basic class of subsets of Rd that we know how
we want to measure. There are several choices for this class, but perhaps the
simplest is the collection of rectangular boxes (rectangular parallelepipeds)
in Rd. The volume of a rectangular box is just the product of the lengths of
its sides. We attempt to extend the notion of volume to arbitrary subsets of
Rd by covering them with rectangular boxes in all possible ways. For each
set E ⊆ Rd, this gives us a number |E|e that we call the exterior Lebesgue
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measure of E. Every subset of Rd has a uniquely defined exterior measure,
and the function | · |e satisfies properties (i), (ii), and (iv) from our list above
for every set E. However, there exist disjoint sets A and B in Rd such that
|A ∪ B|e < |A|e + |B|e! Thus exterior Lebesgue measure does not satisfy
property (iii) for all choices of disjoint subsets of Rd.

Consequently, we take a second step and construct a class L of “good sub-
sets” of Rd such that the number |E| = |E|e satisfies properties (i)–(iv) for all
sets in the class L. The sets in this class are called the measurable sets, and
for a measurable set E the number |E| = |E|e is called the Lebesgue measure
of E. All open and closed sets turn out to be measurable, the complement
of a measurable set is measurable, and the countable union or countable in-
tersection of measurable sets is measurable. Thus, if we begin with some sets
that we know are measurable, such as the open and closed sets, and repeat-
edly apply the operations of complements, countable unions, and countable
intersections, then we obtain measurable sets. This is how most of the sets
that we encounter in practice are constructed, so in this sense the class of
measurable sets is quite satisfactory.

In this chapter we construct Lebesgue measure and examine its properties.
Then in Chapters 3 and 4 we develop the theory of integration with respect to
Lebesgue measure. Just as we must restrict our attention to measurable sets,
we also must restrict to functions that are measurable in a certain sense. For-
tunately, this includes most of the functions that we see in practical contexts.
We will see numerous applications of the Lebesgue integral in Chapters 5
and 6, when we consider local and global properties of functions related to
continuity and differentiation; in Chapter 7, when we discuss the Lp spaces;
in Chapter 8 when we specialize to L2 spaces; and in Chapter 9, when we
discuss convolution, the Fourier transform, and Fourier series.

The domains of most of the functions that we will encounter in this chapter
will be Rd or a subset of Rd. We adopt the Euclidean norm as our “default
norm” on Rd. As we stated in the Preliminaries, the Euclidean norm of a
point x = (x1, . . . , xd) ∈ Rd will be denoted by

‖x‖ =
(
|x1|2 + · · · + |xd|2

)1/2
,

and the open ball in Rd centered at x with radius r is

Br(x) =
{
y ∈ Rd : ‖x − y‖ < r

}
.

2.1 Exterior Lebesgue Measure

In this section we take the first step in the construction of Lebesgue measure,
which is to define the exterior Lebesgue measure of each subset of Rd.
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2.1.1 Boxes

We begin with some especially simple sets whose volumes are known. These
are intervals in one dimension, rectangles in two dimensions, and rectangular
parallelepipeds in higher dimensions. In fact, we will restrict to rectangular
parallelepipeds whose sides are parallel to the coordinate axes. For simplicity,
we refer to these sets as “boxes.” Here is the precise definition of a box and
its volume.

Definition 2.1.1 (Boxes).

(a) A box in Rd is a Cartesian product of d finite closed intervals. In other
words, a box is a set of the form

Q = [a1, b1] × · · · × [ad, bd] =

d∏

j=1

[aj , bj ], (2.1)

where aj < bj for each j.

(b) The volume of the box Q defined in equation (2.1) is the product of the
lengths of its sides:

vol(Q) = (b1 − a1) · · · (bd − ad) =

d∏

j=1

(bj − aj).

(c) The interior of the box Q is the Cartesian product

Q◦ = (a1, b1) × · · · × (ad, bd) =
d∏

j=1

(aj , bj),

and the boundary of Q is ∂Q = Q\Q◦.

(d) If the sidelengths bj − aj of the box Q are all equal, then we call Q a
cube. ♦

A “box” will always mean a set of the form given in equation (2.1). In one
dimension, a box is a finite closed interval and its volume is its length. In
R2 a box is a rectangle whose sides are parallel to the coordinate axes and
its volume is its area. All boxes are closed and bounded, and therefore boxes
are nonempty compact subsets of Rd. Because we require aj < bj for every j,
our boxes all have nonempty interiors, and they have strictly positive (and
finite) volumes.

We will encounter many different configurations of collections of boxes.
Sometimes boxes will be allowed to overlap, sometimes they will be required
to be disjoint, and sometimes we will allow them to overlap as long as they
only intersect at their boundaries. We use the following terminology to de-
scribe this last type of configuration.
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Definition 2.1.2 (Nonoverlapping Boxes). We say that a collection of
boxes {Qk}k∈I is nonoverlapping if their interiors are disjoint, i.e., if

j 6= k ∈ I =⇒ Q◦
j ∩ Q◦

k = ∅. ♦

We will usually only consider collections of countably many boxes. A count-
able collection can be either finite or countably infinite, and we will need to
deal with both possibilities simultaneously. Therefore we introduce the fol-
lowing notational convention.

Notation 2.1.3 (Countable Collections of Boxes). When working with
boxes, the notations {Qk} or {Qk}k will implicitly denote countable collec-
tions of boxes. That is, {Qk} will denote a family that has one of the forms
{Qk}k∈N or {Qk}N

k=1, where N is a positive integer. ♦

We will often consider collections of boxes whose union contains a set E.
As we specify in the following definition, such a family is called a cover of E.

Definition 2.1.4. We say that a set E ⊆ Rd is covered by a collection of
boxes {Qk} if

E ⊆
⋃
k

Qk. ♦

2.1.2 Some Facts about Boxes

Every open subset of R can be written as a union of at most countably many
disjoint open intervals. Bounded open intervals in R are one-dimensional open
balls, so every bounded open subset of R can be written as a union of at most
countably many disjoint open balls. This fact does not generalize to higher
dimensions. For example, the open square S = (0, 1)2 in R2 cannot be written
as a union of countably many disjoint open balls.

Although we cannot write open sets as disjoint unions of balls in general,
the following lemma provides us with a useful substitute. According to this
lemma, every open set in Rd, in any dimension d ≥ 1, can be written as a
union of countably many nonoverlapping cubes. Two easy examples in one
dimension (where cubes are simply finite closed intervals) are

R =
⋃

k∈Z

[k, k + 1] and (0,∞) =
⋃

k∈Z

[
2k, 2k+1

]
.

Since any finite union of cubes is a compact set, there is no way that we can
write an open set as a union of finitely many cubes. On the other hand, the
next lemma shows that we will never need more than countably many cubes.

Lemma 2.1.5. If U is a nonempty open subset of Rd, then there exist count-
ably many nonoverlapping cubes {Qk}k∈N such that U =

S

Qk.
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Proof. Let Q = [0, 1]d, and for each n ∈ Z and k ∈ Zd set

Qn,k = 2−nQ + 2−nk.

If we fix an n ∈ Z, then the collection {Qn,k}k∈Zd is a cover of Rd by nonover-
lapping cubes that have sidelengths 2−n.

Let U be a nonempty open set. We will choose from the boxes Qn,k to
create a set of nonoverlapping cubes whose union is U. First, we identify the
cubes Q0,k with sidelength 1 that are completely contained in U. Specifically,
we set

I0 =
{
k ∈ Zd : Q0,k ⊆ U

}
.

Then we let I1 consist of all indices k ∈ Zd such that Q1,k is contained
in U but Q1,k is not contained in any cube Q0,j with j ∈ I0. We continue
in this way to collect smaller and smaller cubes. This gives us a collection
of nonoverlapping cubes Qn,k that are contained in U. Every point x ∈ U
belongs to at least one such cube (why?). Consequently,

U =
⋃

n≥0

⋃
k∈In

Qn,k. ⊓⊔

It seems “obvious” that the volume of a box Q that is the union of finitely
many nonoverlapping boxes Q1, . . . , Qn must equal the sum of the volumes
of Q1, . . . , Qn. Later we will see several examples of statements that seem
“obviously true” yet turn out to be false. Fortunately, when we are only
dealing with finitely many boxes, most statements that seem obvious are
indeed true. This is the case in the next lemma. On the other hand, the proof
of this “obvious” statement is more technical than might be expected at first
glance.

Lemma 2.1.6. Let Q =
∏d

j=1[aj , bj ] be a box in Rd. If Q1, . . . , Qn are
nonoverlapping boxes such that Q = Q1 ∪ · · · ∪ Qn, then

vol(Q) =

n∑

k=1

vol(Qk). (2.2)

Proof. First consider the special case where the boxes Q1, . . . , Qn form a
grid-like cover of Q of the type shown in Figure 2.1 for dimension d = 2.

If d = 1, then this grid-like cover simply corresponds to writing

[a, b] = [a1, b1] ∪ · · · ∪ [an, bn],

where
a = a1 < b1 = a2 < b2 = · · · = an < bn = b.

In this case the length of [a, b] equals the sum of the lengths of the intervals
[aj , bj ], and the result follows.
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Fig. 2.1 Boxes Q1, . . . , Qn that form a grid-like cover of Q.

For d = 2, the box Q has the form I × J for some closed intervals I and
J, and the grid-like arrangement in Figure 2.1 corresponds to writing I and
J as unions of nonoverlapping closed subintervals, say I = I1 ∪ · · · ∪ IM and
J = J1 ∪ · · · ∪ JN . Then

vol(Q) = vol(I) vol(J) =

( M∑

j=1

vol(Ij)

)( N∑

k=1

vol(Jk)

)

=

M∑

j=1

N∑

k=1

vol(Ij) vol(Jk)

=

M∑

j=1

N∑

k=1

vol(Ij × Jk),

and so equation (2.2) holds. The result then extends to higher dimensions by
induction.

Fig. 2.2 Left: A generic collection of boxes Q1, . . . , Qn whose union is a box Q. Right:
The sides of the boxes Q1, . . . , Qn are extended to form a grid-like cover of Q.

Now let Q1, . . . , Qn be any collection of finitely many nonoverlapping boxes
whose union is Q. This is the type of arrangement that appears in the left-
hand side of Figure 2.2. As in the right-hand side of Figure 2.2, extend the
sides of each of the boxes Qk. This gives us a set of boxes R1, . . . , Rm (with
m ≥ n) that are in the grid-like configuration discussed before. Applying our
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previous work, we obtain

vol(Q) =

m∑

j=1

vol(Rj).

Now, each of the original boxes Qk is a union of a distinct subset of the boxes
R1, . . . , Rm, say Qk =

S

ℓ∈Lk
Rℓ where the sets L1, . . . , Ln form a partition

of {1, . . . ,m}. Again applying the argument for grid-like arrangements, for
each k we have

vol(Qk) =
∑

ℓ∈Lk

vol(Rℓ).

Consequently,

n∑

k=1

vol(Qk) =

n∑

k=1

∑

ℓ∈Lk

vol(Rℓ) =

m∑

j=1

vol(Rj). ⊓⊔

An extension of Lemma 2.1.6 shows that the sum of the volumes of finitely
many nonoverlapping boxes that cover a box Q must be at least as large as
the volume of Q. We assign this proof as the following exercise.

Exercise 2.1.7. Let Q =
∏d

j=1[aj , bj ] be a box in Rd, and assume that
Q1, . . . , Qn are nonoverlapping boxes such that Q ⊆ Q1 ∪ · · · ∪ Qn. Prove
that

vol(Q) ≤
n∑

k=1

vol(Qk). ♦

2.1.3 Exterior Lebesgue Measure

Now we turn from boxes to generic subsets of Rd. In order to define the
measure of a set E ⊆ Rd, we will try to approximate it by boxes. Suppose
that we cover E by some countable collection of boxes {Qk}, so we have

E ⊆ ⋃
k

Qk.

We have not yet assigned a measure to either of E or
S

Qk, but whatever those
measures are, it seems reasonable to expect that the measure of

S

Qk should
be at least as large as the measure of E. Additionally, it seems reasonable
that the measure of a union of boxes should be no more than the sum of the
volumes of the boxes Qk. The measure of the union could be smaller than the
sum of the volumes due to overlaps, but we should at least have an inequality.
Hence, whatever we decide that the measure of E should be, if we let |E|e
denote that measure then we should have
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|E|e ≤
∑

k

vol(Qk).

Thus, each covering of E by boxes gives us an upper bound for the measure
of E. Some coverings may be “better” than others in some sense, but in-
stead of worrying about how to quantify “better,” we will simply take every
possible covering into account and declare that the exterior measure of E is
the infimum of

∑
vol(Qk) over every countable covering of E by boxes (we

restrict our attention to coverings by countably many boxes because each box
has a strictly positive volume). This leads us to the following definition.

Definition 2.1.8 (Exterior Lebesgue Measure). The exterior Lebesgue
measure (or the outer Lebesgue measure) of a set E ⊆ Rd is

|E|e = inf
{∑

k

vol(Qk)
}

,

where the infimum is taken over all countable collections of boxes {Qk} such
that E ⊆ S

Qk. ♦

For simplicity, we often abbreviate “exterior Lebesgue measure” just as
“exterior measure.” Every subset E of Rd has a well-defined exterior measure
|E|e that lies in the range 0 ≤ |E|e ≤ ∞. By the definition of an infimum,
we immediately obtain the following facts.

Lemma 2.1.9. Let E be any subset of Rd.

(a) If {Qk} is any countable cover of E by boxes, then

|E|e ≤
∑

k

vol(Qk). (2.3)

(b) If ε > 0, then there exists some countable cover {Qk} of E by boxes such
that ∑

k

vol(Qk) ≤ |E|e + ε. ♦ (2.4)

Note that in either of equations (2.3) or (2.4), the exterior measure |E|e
could be infinite. By definition, if E is a bounded subset of Rd then E is
contained inside some ball of finite radius. Taking Q to be a box that contains
this ball, we see that {Q} is a collection of one box that covers E. Part (a)
of Lemma 2.1.9 therefore implies that

|E|e ≤ vol(Q) < ∞.

Thus all bounded sets have finite exterior measure.
Here is an example of an unbounded subset of R that has finite measure.



2.1 Exterior Lebesgue Measure 41

Example 2.1.10. A box in R is just a finite closed interval, so Qk = [k, k+2−k]
is a box. Set

E =
∞⋃

k=1

[k, k + 2−k].

Since E is not contained in any finite interval, it is unbounded. On the other
hand, {Qk}k∈N is a countable covering of E by boxes, so Lemma 2.1.9(a)
implies that

|E|e ≤
∞∑

k=1

vol(Qk) =

∞∑

k=1

2−k = 1.

Thus E has finite exterior measure, even though it is unbounded. We cannot
prove it yet, but later we will see that the exterior measure of E is precisely
|E|e = 1. ♦

Next we prove some basic properties of exterior measure.

Lemma 2.1.11. (a) Exterior Lebesgue measure is translation-invariant, i.e.,
for every set E ⊆ Rd and every vector h ∈ Rd we have

|E + h|e = |E|e.

(b) Exterior Lebesgue measure is monotonic, i.e., if A, B ⊆ Rd, then

A ⊆ B =⇒ |A|e ≤ |B|e.

(c) |∅|e = 0.

(d) If E is a countable subset of Rd, then |E|e = 0.

Proof. (a) If {Qk}k is any countable cover of E by boxes, then {Qk + h}k is
a countable cover of E + h by boxes. Lemma 2.1.11(a) therefore implies that

|E + h|e ≤
∑

k

vol(Qk + h) =
∑

k

vol(Qk).

This is true for every covering of E, so we conclude that |E +h|e ≤ |E|e. The
opposite inequality is entirely symmetric.

(b) Suppose that A ⊆ B, and let {Qk}k be any countable cover of B by
boxes. Then {Qk}k is also a countable cover of A by boxes, so

|A|e ≤
∑

k

vol(Qk).

This is true for every possible covering of B, so

|A|e ≤ inf
{∑

k

vol(Qk) : all covers of B by boxes
}

= |B|e.
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(c) If Q is a box, then Q covers ∅, no matter how small we choose the
sides of Q. Therefore |∅|e ≤ vol(Q), and vol(Q) can be arbitrarily small.

(d) Let E = {xk} be a countable subset of Rd. For each k, let Qk be a box
with volume ε/2k that contains xk. Then {Qk}k covers E, so

|E|e ≤
∑

k

vol(Qk) ≤ ε
∑

k

1

2k
≤ ε.

Since ε is arbitrary, we conclude that |E|e = 0. ⊓⊔

Since the set of rationals Q is a countable subset of R, Lemma 2.1.11(d)
implies that its exterior measure is zero. Thus Q is a “very small” part of R

in a measure-theoretic sense. This contrasts with the fact that Q is dense in
R and therefore is a “very large” part of R in a topological sense. A set and
its closure can have very different exterior measures!

While every countable set has zero exterior measure, there also exist un-
countable subsets of Rd whose exterior measure is zero. We will see examples
of such sets in Lemma 2.1.21 (for dimensions d ≥ 2) and in Example 2.1.23
(for dimension d = 1).

Remark 2.1.12. We will prove in Theorem 2.1.17 that if Q is a box then
|Q|e = vol(Q). That is, the exterior measure of a box equals its volume in the
usual sense. This is not yet obvious; in fact, a challenge is to try to prove, using
only the definition of exterior measure, that the exterior measure of the closed
interval [0, 1] is 1, or even that it is nonzero. One difficulty in this regard is
that Lemma 2.1.6 and Exercise 2.1.7 only apply to finite collections of boxes,
whereas the definition of exterior measure involves all possible coverings by
countably many boxes. ♦

Our next theorem shows that the exterior measure of a countable union
of sets is no more than the sum of the exterior measures of these sets (this
is called the countable subadditivity property of exterior Lebesgue measure).
The sets here are not required to be disjoint, so we could very well have strict
inequality because of overlaps or duplications of sets. We might expect that
if the sets involved are disjoint then the measure of their union will equal the
sums of the measures of the sets, but this does not always hold! In particular,
we will see in Example 2.4.7 that there exist disjoint sets A and B such that
|A ∪ B|e < |A|e + |B|e.

Theorem 2.1.13 (Countable Subadditivity). If E1, E2, . . . are countably
many sets in Rd, then ∣∣∣∣

∞⋃
k=1

Ek

∣∣∣∣
e

≤
∞∑

k=1

|Ek|e. (2.5)

Proof. If any particular set Ek has infinite exterior measure then both sides
of equation (2.5) are ∞, so we are done in this case. Therefore, assume that
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|Ek|e < ∞ for every k, and fix ε > 0. By Lemma 2.1.9, for each k we can find

a covering
{
Q

(k)
j

}
j

of Ek by countably many boxes such that

∑

j

vol
(
Q

(k)
j

)
≤ |Ek|e +

ε

2k
. (2.6)

Then
{
Q

(k)
j

}
j,k

is a covering of
S

kEk by countably many boxes, so

∣∣∣
∞⋃

k=1

Ek

∣∣∣
e
≤

∞∑

k=1

∑

j

vol
(
Q

(k)
j

)
(by Lemma 2.1.9)

≤
∞∑

k=1

(
|Ek|e +

ε

2k

)
(by equation (2.6))

=

( ∞∑

k=1

|Ek|e
)

+ ε.

Since ε is arbitrary, the result follows. ⊓⊔

By setting Ek = ∅ for k > N, a corollary of Theorem 2.1.13 is that exterior
Lebesgue measure is finitely subadditive, i.e., if E1, . . . , EN are finitely many
sets in Rd, then

∣∣∣
N⋃

k=1

Ek

∣∣∣
e
≤

N∑

k=1

|Ek|e.

However, subadditivity need not hold for uncountable collections of sets. For
example, the real line is an uncountable union of singletons,

R =
⋃

x∈R

{x},

and the exterior measure of each singleton {x} is zero, yet we will see in
Corollary 2.1.19 that |R|e = ∞.

The following definition introduces some terminology for sets that we will
need later in the text.

Definition 2.1.14 (Limsup and Liminf of Sets). If {Ek}k∈N is a sequence
of subsets of Rd, then we define

lim sup
k→∞

Ek =
∞⋂

j=1

(
∞⋃

k=j

Ek

)
and lim inf

k→∞
Ek =

∞⋃
j=1

(
∞⋂

k=j

Ek

)
. ♦

Exercise 2.1.15. Given sets Ek ⊆ Rd, prove the following statements.

(a) lim supEk consists of those points x ∈ Rd that belong to infinitely many
of the Ek.
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(b) lim infEk consists of those x which belong to all but finitely many Ek

(i.e., there exists some k0 ∈ N such that x ∈ Ek for all k ≥ k0). ♦

The proof of the following result is an application of countable subaddi-
tivity.

Exercise 2.1.16 (Borel–Cantelli Lemma). Suppose that sets Ek ⊆ Rd

satisfy
∑ |Ek|e < ∞. Prove that lim infEk and lim supEk each have exterior

measure zero. ♦

2.1.4 The Exterior Measure of a Box

We expect that the exterior measure of a box should coincide with its volume,
but we have not proved this yet. Since we can cover a box Q by the collection
{Q} that contains the single box Q, we do obtain the inequality |Q|e ≤ vol(Q)
directly from Definition 2.1.8. However, the opposite inequality is not trivial.

Theorem 2.1.17 (Consistency with Volume). If Q is a box in Rd, then

|Q|e = vol(Q).

Proof. As noted above, we have the inequality |Q|e ≤ vol(Q). To prove the
converse inequality, let {Qk} be any covering of Q by countably many boxes,
and fix ε > 0. For each k ∈ N, let Q∗

k be a box that contains Qk in its interior
but is only slightly larger than Qk in the sense that

vol(Q∗
k) ≤ (1 + ε) vol(Qk).

For example, if Qk =
∏d

j=1[a
k
j , bk

j ], then by choosing δk > 0 small enough we
can take

Q∗
k =

d∏

j=1

[
ak

j − δk, bk
j + δk

]
.

Since Qk ⊆ (Q∗
k)◦, the interiors of the boxes Q∗

k form an open covering
of Q:

Q ⊆
⋃
k

Qk ⊆
⋃
k

(Q∗
k)◦.

But Q is compact, so this covering must have a finite subcovering (see Defi-
nition 1.1.8). That is, there exists some integer N > 0 such that

Q ⊆
N⋃

k=1

(Q∗
k)◦ ⊆

N⋃
k=1

Q∗
k.

Thus the box Q is covered by the finitely many boxes Q∗
1, . . . , Q

∗
N . It seems

obvious that the volume of Q cannot exceed the sum of the volumes of the Q∗
k.
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This is true, and furthermore it is a computation that only involves volumes of
boxes, not exterior measures. In fact, this is precisely the content of Exercise
2.1.7. Applying that exercise, we see that

vol(Q) ≤
N∑

k=1

vol(Q∗
k) ≤ (1 + ε)

N∑

k=1

vol(Qk) ≤ (1 + ε)
∑

k

vol(Qk).

In summary, we have shown that vol(Q) ≤ (1 + ε)
∑

vol(Qk) for every
covering of Q by countably many boxes. Taking the infimum over all such
coverings, we obtain vol(Q) ≤ (1 + ε) |Q|e. Since ε is arbitrary, the desired

inequality vol(Q) ≤ |Q|e follows. ⊓⊔
Remark 2.1.18. The proofs of Theorems 2.1.13 and 2.1.17 illustrate two ways
of “getting within ε” when dealing with countable sums. In the proof of
Theorem 2.1.17 we introduced a multiplicative 1 + ε factor, whereas in the
proof of Theorem 2.1.13 we incorporated an additive term of the form 2−kε.
Both techniques are useful in practice. ♦
Corollary 2.1.19. |Rd|e = ∞.

Proof. Let Qk = [−k, k]d. Then, by monotonicity and Theorem 2.1.17,

(2k)d = vol(Qk) = |Qk|e ≤ |Rd|e.

Letting k → ∞, we see that |Rd|e = ∞. ⊓⊔
The next result, whose proof we assign to the reader, is an extension of

Theorem 2.1.17, and it can be proved in a similar manner. This exercise says
that the exterior measure of a union of finitely many nonoverlapping boxes
equals the sum of the volumes of those boxes.

Exercise 2.1.20. Show that if Q1, . . . , Qn are nonoverlapping boxes in Rd,
then

|Q1 ∪ · · · ∪ Qn|e = vol(Q1) + · · · + vol(Qn). ♦
In dimension d = 1, a box is a finite closed interval, and the boundary

of a closed interval Q = [a, b] is the two-point set ∂Q = {a, b}. Since ∂Q is
a finite set, Lemma 2.1.11(d) tells us that |∂Q|e = 0. Combining this with
subadditivity and monotonicity, we see that

|Q|e = |Q◦ ∪ ∂Q|e
≤ |Q◦|e + |∂Q|e (by subadditivity)

= |Q◦|e + 0

≤ |Q|e (by monotonicity). (2.7)

Consequently, at least in dimension d = 1, a box Q and its interior Q◦ have
the same exterior measure. The following lemma proves that this equality
holds in every dimension (note that ∂Q is not a countable set when d ≥ 2).



46 2 Lebesgue Measure

Lemma 2.1.21. If Q is a box in Rd, then

|∂Q|e = 0 and |Q◦|e = |Q|e.

In particular, if d ≥ 2, then the boundary of box is an uncountable set that
has exterior measure zero.

Proof. To illustrate the idea, consider the unit square Q = [0, 1]2 in R2. The
boundary of Q is a union of four line segments ℓ1, ℓ2, ℓ3, ℓ4. Each line segment
is an uncountable set, but (as a subset of R2) it has measure zero since we can
cover it with a single rectangle that has arbitrarily small area. For example,
for the bottom line segment ℓ1 we can write

ℓ1 =
{
(x, 0) : 0 ≤ x ≤ 1

}
⊆ [0, 1] × [−ε, ε] = Qε,

and vol(Qε) = 2ε. Since we can do this for any ε > 0, the two-dimensional
exterior Lebesgue measure of the line segment ℓ1 is zero. The boundary of Q
is the union of four such line segments, so by countable subadditivity we
obtain |∂Q|e = 0. A similar idea works for any box in any dimension; we
assign the details as Problem 2.1.36.

Finally, now that we know that |∂Q|e = 0, we can argue just as we did in
equation (2.7) to show that |Q◦|e = |Q|e. ⊓⊔
Corollary 2.1.22. If −∞ < a ≤ b < ∞, then

|[a, b]|e = |[a, b)|e = |(a, b]|e = |(a, b)|e = b − a.

Proof. If a = b then the result is immediate. Otherwise [a, b] is a box in R

and its boundary is the finite set {a, b}, so the equalities follow from Theorem
2.1.17 and Lemma 2.1.21. ⊓⊔

2.1.5 The Cantor Set

In dimensions 2 and greater, the boundary of a box is an uncountable set
that has exterior measure zero. It is not as easy to exhibit an uncountable
subset of R that has zero exterior measure, but such sets do exist. We will
construct a set C, known as the Cantor set, whose exterior measure is zero,
and following the construction we give an exercise that sketches a proof that
C is uncountable.

Example 2.1.23 (The Cantor Set). Define

F0 = [0, 1],

F1 =
[
0, 1

3

]
∪

[
2
3 , 1

]
,

F2 =
[
0, 1

9

]
∪

[
2
9 , 1

3

]
∪

[
2
3 , 7

9

]
∪

[
8
9 , 1

]
,
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and so forth (see Figure 2.3).

Fig. 2.3 The Cantor set C is the intersection of the sets Fn over all n ≥ 0.

For a given integer n, the set Fn is the union of 2n disjoint closed intervals,
each of which has length 3−n. Now, a finite closed interval in one dimension
is a box, and we know that the exterior measure of a box equals its volume
(which in this case is the length of the interval). Subadditivity therefore
implies that

0 ≤ |Fn|e ≤ 2n 3−n = (2/3)n.

(In fact, the exterior measure of Fn is precisely (2/3)n, but an upper bound is
all that we need here.) We create the set Fn+1 by removing the middle third
from each of the 2n intervals that comprise Fn. The classical “middle-thirds”
Cantor set is the intersection of all these sets:

C =
∞⋂

n=0
Fn.

The Cantor set is closed because each Fn is closed. Moreover C ⊆ Fn, so by
monotonicity we have

0 ≤ |C|e ≤ |Fn|e ≤ (2/3)n.

This is true for every integer n ≥ 0, so we conclude that the exterior measure
of the Cantor set is |C|e = 0. ♦

The following exercise gives one method of showing that the Cantor set is
uncountable.

Exercise 2.1.24. The ternary expansion of x ∈ [0, 1] is

x =

∞∑

n=1

cn

3n
,

where each “digit” cn is either 0, 1, or 2. Every point x ∈ [0, 1] has a unique
ternary expansion, except for points of the form x = m/3n with m, n integer,
which have two ternary expansions (one ending with infinitely many 0’s, and
one with infinitely many 2’s). Show that x belongs to C if and only if x has
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at least one ternary expansion for which every digit cn is either 0 or 2, and
use this to show that C is uncountable. ♦

Thus, although the Cantor set is “small” in terms of measure, it is “large”
in terms of cardinality. The Cantor set has many other remarkable properties,
some of which are laid out in the next exercise.

Exercise 2.1.25. Prove the following statements about the Cantor set C.

(a) C is closed.

(b) C contains no open intervals.

(c) C◦ = ∅ (i.e., the interior of C is empty).

(d) C = ∂C (i.e., every point in C is a boundary point of C).

(e) Every point in C is an accumulation point of C (i.e., if x ∈ C then there
exist points xn ∈ C with xn 6= x such that xn → x).

(f) Every point in C is an accumulation point of [0, 1]\C (i.e., if x ∈ C then
there exist points xn /∈ C such that xn → x). ♦

A set is totally disconnected if it contains no nontrivial connected subsets
(in one dimension, connected sets are simply intervals). A nonempty set S is
perfect if every point x ∈ S is an accumulation point of S. Using this terminol-
ogy, the Cantor set is both perfect and totally disconnected. Problem 2.1.45
shows that every perfect subset of Rd is uncountable.

By slightly changing the process used to construct the Cantor set, we will
obtain a set that has some very surprising properties.

Example 2.1.26 (The Fat Cantor Set). Let F0 = [0, 1]. To construct the Can-
tor set, we removed an open interval of length 1/3 from F0. Let us instead
remove an open interval of length a1, where a1 can be different than 1/3 (al-
though we must have 0 < a1 < 1). For simplicity, we center this open interval
within F0, so we are left with a set F1 that is the union of two closed intervals
of equal length. From each of these intervals, remove a centered open interval
of length a2. This gives us a set F2 that is the union of four closed intervals.
From each of these we remove a centered open interval of length a3, giving
us a set F3. We repeat this process, and set P =

T

Fn. Just like the Cantor
set, the resulting set P is closed, contains no intervals, and equals its own
boundary.

What is the measure of P? We have P ⊆ Fn for every n, but in this
construction it need not be the case that |Fn|e → 0 (depending on how
we choose the an). So, consider the open set U = [0, 1]\P. This set is the
union of all of the disjoint intervals that were removed from [0, 1] during the
construction of P. At the first stage, we removed one interval of length a1.
Then we removed two intervals of length a2 at the second stage, four intervals
of length a3 at the third stage, and so forth. Now, it is not true in general
that the measure of the union of disjoint sets is the sum of their measures,
but we will prove later that this does hold for all measurable sets. Open sets
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are measurable, so if we accept this fact for now, then it follows that the
measure of U is

|U |e =

∞∑

k=1

2n−1an (to be justified later).

If the an converge to zero rapidly enough, then this sum will be strictly
less than 1 (for example, consider an = 2−2n). Since U and P are disjoint
measurable sets, |U |e + |P |e equals |U ∪ P |e, which is 1. Consequently,

|P |e = 1 − |U |e (still to be proved),

and this can be strictly positive. The justification of these results does require
facts from Section 2.2, and the details are assigned later as Problem 2.2.42.

The set P is called a Smith–Volterra–Cantor set or a fat Cantor set. In
summary, if we choose an that converge rapidly enough to zero, then

P is closed set that has positive exterior measure
yet contains no intervals!

There are sets—even closed sets—that have empty interiors but still have
positive measure. ♦

2.1.6 Regularity of Exterior Measure

Next we prove a “regularity property” of exterior Lebesgue measure. We will
show that if E is any subset of Rd and ε is any positive real number, then
we can surround E by an open set U whose exterior measure is only ε larger
than that of E. By monotonicity we also have |E|e ≤ |U |e, so the measure of
this set U is very close to the measure of E.

Theorem 2.1.27. If E ⊆ Rd and ε > 0, then there exists an open set U ⊇ E
such that

|E|e ≤ |U |e ≤ |E|e + ε.

Consequently,
|E|e = inf

{
|U |e : U open, U ⊇ E

}
.

Proof. If |E|e = ∞ then we can take U = Rd. So, assume that |E|e < ∞. By
Lemma 2.1.9, there exist countably many boxes Qk such that E ⊆ S

Qk and

∑

k

vol(Qk) ≤ |E|e +
ε

2
.

Let Q∗
k be a larger box that contains Qk in its interior and satisfies

vol(Q∗
k) ≤ vol(Qk) + 2−k−1ε.
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Let U =
S

(Q∗
k)◦ be the union of the interiors of the boxes Q∗

k. Then E ⊆ U,
U is open, and

|E|e ≤ |U |e ≤
∑

k

vol(Q∗
k) ≤

∑

k

vol(Qk) +
ε

2
≤ |E|e + ε. ⊓⊔

If E has finite exterior measure, then we can refine Theorem 2.1.27 slightly.

Corollary 2.1.28. If E ⊆ Rd satisfies |E|e < ∞, then for each ε > 0 there
exists an open set U ⊇ E such that

|E|e ≤ |U |e < |E|e + ε.

Proof. By Theorem 2.1.27, there exists an open set U ⊇ E that satisfies
|U |e ≤ |E|e + ε

2 . Since |E|e is finite, we have |E|e + ε
2 < |E|e + ε. ⊓⊔

If we apply Theorem 2.1.27 to the set of rationals Q, we see that if ε > 0
then there must exist an open set U that contains Q and satisfies

0 = |Q|e ≤ |U |e ≤ |Q|e + ε = ε.

This seems counterintuitive, since it says that even though Q is dense in R,
we can surround it with an open set whose exterior measure is at most ε.
To explicitly construct such a set U, let Q = {rk}k∈N be an enumeration of
the rationals, and for each k let Ik be an open interval of length 2−kε that
contains rk. Then U =

S

Ik is open, contains every rational point, and by
subadditivity satisfies

|U |e ≤
∞∑

k=1

|Ik|e =

∞∑

k=1

2−kε = ε.

Problems

2.1.29. Prove that a countable union of sets that each have exterior measure
zero has exterior measure zero. That is, if Zk ⊆ Rd and |Zk|e = 0 for each
k ∈ N, then

∣∣S

Zk

∣∣
e

= 0.

2.1.30. Show that if Z ⊆ Rd and |Z|e = 0, then Rd\Z is dense in Rd.

2.1.31. Let Z be a subset of R such that |Z|e = 0. Set Z2 = {x2 : x ∈ Z},
and prove that |Z2|e = 0.

2.1.32. Show that if f : R → R is continuous, then its graph

Γf =
{(

x, f(x)
)

: x ∈ R
}

⊆ R2

has measure zero, i.e., |Γf |e = 0.
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2.1.33. The symmetric difference of A, B ⊆ Rd is A△B = (A\B)∪ (B\A).
Prove that if |A|e, |B|e < ∞, then

∣∣|A|e − |B|e
∣∣ ≤ |A△B|e.

2.1.34. Given E ⊆ Rd, prove that |E|e = inf
{∑

vol(Qk)
}
, where the infi-

mum is taken over all countable collections of boxes {Qk} such that E ⊆ S

Q◦
k.

2.1.35. Find the exterior measures of the following sets.

(a) L = {(x, x) : 0 ≤ x ≤ 1}, the diagonal of the unit square in R2 (this is
a special case of part (b), but it may be instructive to work this first).

(b) An arbitrary line segment, ray, or line in R2.

2.1.36. Prove that the (d − 1)-dimensional subspace of Rd defined by

S = Rd−1 × {0} =
{
(x1, . . . , xd−1, 0) : x1, . . . , xd−1 ∈ R

}

has exterior measure |S|e = 0, and consequently every subset of S has exterior
measure zero.

2.1.37.* Prove that every subset of every proper subspace of Rd has exterior
measure zero.

2.1.38. (a) Let D be a diagonal matrix with diagonal entries δ1, . . . , δd. Prove
that

|D(E)|e = |δ1 · · · δd| |E|e,
where D(E) = {Dx : x ∈ E} =

{
(δ1x1, . . . , δdxd) : x ∈ E

}
.

(b) Prove that for each integer d ≥ 1 there exists some constant Cd such
that for every x ∈ Rd and r > 0 we have |Br(x)|e = Cd rd (an explicit formula
for Cd is not required here).

2.1.39. Given a set E ⊆ Rd, show that |E|e = 0 if and only if there exist
countably many boxes Qk such that

∑
vol(Qk) < ∞ and each point x ∈ E

belongs to infinitely many Qk.

2.1.40. Assume that Z ⊆ R satisfies |Z|e = 0. Prove that there exists at
least one point h ∈ R such that the translated set Z + h contains no rational
points.

2.1.41.* (a) Let U be a bounded open subset of R, and write U as the
union of countably many disjoint open intervals (ak, bk). Prove that |U |e =∑

k (bk − ak).

Remark: If we are allowed to appeal to later results, then this is an imme-
diate consequence of Theorem 2.2.16. The challenge is to find a solution that
only uses the tools that have been developed so far in this section.

(b) Prove that the exterior measure of the complement of the Cantor set
is |[0, 1]\C|e = 1.
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2.1.42. Let C be the Cantor set, and let D =
{∑∞

n=1 3−ncn : cn = 0, 1
}
.

Show that D+D = [0, 1], and use this to show that C +C = [0, 2]. Therefore
|C + C|e = 2, even though |C|e = 0.

2.1.43. Modify the Cantor middle-thirds set construction as follows. Fix a
parameter 0 < α < 1, and at stage n form Fn+1 by removing a subinterval of
relative length α from each of the 2n intervals whose union is Fn (so α = 1

3
corresponds to the usual Cantor set). Show that the generalized Cantor set
Cα =

T

Fn is perfect, has no interior, equals its own boundary, and satisfies
|Cα|e = 0.

2.1.44. Let F consist of all numbers x ∈ [0, 1] whose decimal expansion does
not contain the digit 4. Find |F |e.

2.1.45. This problem will show that any perfect subset of Rd must be un-
countable. Suppose that S = {x1, x2, . . . } is a countably infinite perfect sub-
set of Rd. Let n1 = 1 and r1 = 1, and let U1 = Br1

(xn1
). Let n2 be the first

integer greater than n1 such that xn2
∈ U1, and show that we can choose

r2 > 0 so that U2 = Br2
(xn2

) satisfies U2 ⊆ U2 ⊆ U1 but xn1
/∈ U2. Continue

in this way, and then define K =
T

(Un ∩ S). Prove that the sets Un ∩ S are
compact and nested decreasing. The Cantor Intersection Theorem therefore
implies that K is nonempty. Show that no element of S can belong to K.

2.2 Lebesgue Measure

Take another look at Theorem 2.1.27, which says that if E is an arbitrary
subset of Rd and ε is any positive number, then we can find an open set U
that contains E and has measure at most ε larger than the measure of E.
Thus,

|E|e ≤ |U |e ≤ |E|e + ε.

Since U contains E, we can write U as the union of E and U \E:

U = E ∪ (U \E). (2.8)

Applying countable subadditivity (Theorem 2.1.13), we see that

|U |e ≤ |E|e + |U \E|e. (2.9)

The sets E and U \E in equation (2.8) are actually disjoint sets, so we are
tempted to believe that the sum of their measures should equal the measure
of E ∪ (U \E) = U. That is, we suspect that

|U |e = |E|e + |U \E|e ← WE DO NOT KNOW THIS!
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However, as the preceding line emphasizes, we do not know that this equality
must hold, and there is nothing that we have proved so far that will allow
us to infer that |U |e and |E|e + |U \E|e are equal. In fact, we will see in
Example 2.4.7 that equality does not always hold! Consequently, in this sec-
tion we restrict our attention from arbitrary subsets of Rd to a smaller class
of “measurable subsets” on which exterior measure is “well behaved.”

2.2.1 Definition and Basic Properties

To motivate the definition of measurability, suppose that U is an open set
that contains a set E. As we observed above, we do not know whether |U |e
and |E|e + |U \E|e will be equal. If it were the case that these quantities
were equal, then we could combine this equality with equation (2.9) and
infer that |U \E|e ≤ ε. The “measurable sets” are precisely the sets for which
this inequality can be achieved. Here is the explicit definition.

Definition 2.2.1 (Lebesgue Measure). A set E ⊆ Rd is Lebesgue mea-
surable, or simply measurable for short, if

∀ ε > 0, ∃ open U ⊇ E such that |U \E|e ≤ ε.

If E is Lebesgue measurable, then its Lebesgue measure is its exterior
Lebesgue measure, and in this case we denote this value by |E| = |E|e. ♦

There is no difference between the numeric value of the Lebesgue measure
and the exterior Lebesgue measure of a measurable set, but when we know
that E is measurable we write |E| instead of |E|e.
Notation 2.2.2. The collection of all Lebesgue measurable subsets of Rd will
be denoted by

L = L(Rd) =
{
E ⊆ Rd : E is Lebesgue measurable

}
. ♦

We would like to know which types of subsets of Rd are measurable. A
first observation is that L contains all of the open subsets of Rd.

Lemma 2.2.3 (Open Sets Are Measurable). If U ⊆ Rd is open, then U
is Lebesgue measurable, and therefore U ∈ L.

Proof. If U is open, then U is an open set that contains U, and for each ε > 0
we have |U \U |e = 0 < ε. ⊓⊔

Consequently, from now on we will write the measure of an open set U
as |U | instead of |U |e.

Now we show that every set whose exterior measure is zero is measurable.
No such set (other than the empty set) can be open, so this gives us examples
of measurable sets that are not open.
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Lemma 2.2.4 (Null Sets Are Measurable). If Z ⊆ Rd and |Z|e = 0,
then Z is measurable.

Proof. Fix any ε > 0. Then, by Theorem 2.1.27, there is an open set U ⊇ Z
such that

|U |e ≤ |Z|e + ε = 0 + ε = ε.

Since U \Z ⊆ U, monotonicity implies that |U \Z|e ≤ |U |e ≤ ε. Therefore Z
is measurable. ⊓⊔

We use a variety of phrases to refer to a set Z whose exterior measure is
|Z| = 0. For example, we may say that Z is a “zero-measure set,” a “measure-
zero set,” a “set of measure zero,” and so forth. A set that has measure zero
is also called a “null set,” and the complement of a null set is sometimes
called a set of “full measure.” Precisely, if Z ⊆ E and |Z| = 0, then we say
that Z is a null set in E and E\Z has full measure in E.

Instead of considering individual sets, let us turn to the family L of all
measurable sets and try to determine what operations this collection is closed
under. The next result shows that the union of countably many sets from L
remains in L.

Theorem 2.2.5 (Closure Under Countable Unions). If E1, E2, . . . are
measurable subsets of Rd, then their union E =

S

Ek is also measurable, and

|E| ≤
∞∑

k=1

|Ek|. (2.10)

Proof. Fix ε > 0. Since Ek is measurable, there exists an open set Uk ⊇ Ek

such that
|Uk\Ek|e ≤ ε

2k
.

Then U =
S

Uk is an open set, U ⊇ E, and

U \E =
( ∞⋃

k=1

Uk

)
\

( ∞⋃
k=1

Ek

)
⊆

∞⋃
k=1

(Uk\Ek).

Hence

|U \E|e ≤
∞∑

k=1

|Uk\Ek|e ≤
∞∑

k=1

ε

2k
= ε,

so E is measurable. Finally, equation (2.10) follows from the countable sub-
additivity property of Lebesgue measure. ⊓⊔

By setting Ek = ∅ for k > N, a corollary of Theorem 2.2.5 is that a union
of finitely many measurable sets is measurable. However, an uncountable
union of measurable sets need not be measurable. For example, if N is a
nonmeasurable set then we can write N =

S

x∈N{x}, yet each singleton {x}
is measurable.
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2.2.2 Toward Countable Additivity and Closure under

Complements

So far, the only sets that we have explicitly shown to be measurable are open
sets and sets whose exterior measure is zero. A box is not open and it has
positive measure, so it does not fall into either of these two categories. On the
other hand, a box Q is a union of its interior Q◦ and its boundary ∂Q. The
interior is measurable because it is open, and the boundary is measurable
because it has exterior measure zero (see Lemma 2.1.21). Theorem 2.2.5 tells
us that the union of countably many measurable sets is measurable, so we
conclude that Q = Q◦ ∪ ∂Q is measurable. We formalize this as follows.

Corollary 2.2.6 (Boxes Are Measurable). Every box in Rd is a Lebesgue
measurable set. ♦

Can we use the same technique to show that every closed set is measurable?
After all, if F is a closed set then we can write F = F ◦∪∂F, and the interior
F ◦ is open and therefore measurable. If |∂F |e = 0, then ∂F is measurable
as well, and so in this case we can conclude that F is measurable. It is hard
to imagine a closed set whose boundary does not have measure zero, but
such sets do exist! A specific example was constructed in Example 2.1.26.
Consequently, it is not obvious whether all closed sets are measurable, and it
will take some work to prove that they are.

Since we know that open sets are measurable, if we can prove that the
complement of a measurable set is measurable then we will obtain the mea-
surability of closed sets as a corollary. That is one of our goals, and another
is to prove that Lebesgue measure is countably additive on the measurable
sets, i.e., if E1, E2, . . . are countably many disjoint measurable sets, then the
Lebesgue measure of

S

Ek equals
∑ |Ek|. We will work simultaneously toward

proving closure under complements and countable additivity.
Our first step in this direction considers additivity of two sets, given the

extra assumption that these sets are separated by a positive distance. The
distance between two nonempty sets A, B ⊆ Rd is

dist(A,B) = inf
{
‖x − y‖ : x ∈ A, y ∈ B

}
, (2.11)

where, as usual, ‖ · ‖ denotes the Euclidean norm on Rd. We will show that if
A and B are any two subsets of Rd (possibly even nonmeasurable!) that are
separated by a strictly positive distance, then the exterior measure of A ∪B
equals the sum of the exterior measures of A and B. For this proof, we need
to observe that if Q is a box in Rd, then by subdividing each side of Q in two
we obtain 2d nonoverlapping subboxes whose union is Q. Further, the sum
of the volumes of these 2d subboxes is precisely the volume of Q (see Lemma
2.1.6). Consequently, when computing an exterior measure, if we like we can
always replace a given box by a finite number of smaller nonoverlapping boxes
whose volumes sum to the volume of the original box.
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Lemma 2.2.7. If A, B ⊆ Rd are nonempty and dist(A,B) > 0, then

|A ∪ B|e = |A|e + |B|e.

Proof. Countable subadditivity implies that |A∪B|e ≤ |A|e + |B|e. We must
prove the opposite inequality.

Fix ε > 0. By Lemma 2.1.9, there exist countably many boxes Qk such
that A ∪ B ⊆ S

Qk and

∑

k

|Qk| ≤ |A ∪ B|e + ε.

As illustrated in Figure 2.4, by dividing each box Qk into finitely many
subboxes if necessary, we can assume that the diameter of Qk is less than the
distance between A and B, i.e.,

diam(Qk) = sup
{
‖x − y‖ : x, y ∈ Qk

}
< dist(A,B).

Fig. 2.4 A box Qk is subdivided into finitely many smaller boxes, each of whose diameter

is less than dist(A, B).

After we have subdivided the boxes in this way, we see that each box Qk

can intersect at most one of A or B. Let
{
QA

k

}
be the subsequence of {Qk}

that contains those boxes that intersect A, and let
{
QB

k

}
be the subsequence

of boxes that intersect B. Since {Qk} covers A∪B, it follows that A is covered
by

{
QA

k

}
and B is covered by

{
QB

k

}
. Therefore

|A|e + |B|e ≤
∑

k

|QA
k | +

∑

k

|QB
k | ≤

∑

k

|Qk| ≤ |A ∪ B|e + ε.

Since ε is arbitrary, we conclude that |A|e + |B|e ≤ |A ∪ B|e. ⊓⊔

Any two disjoint nonempty compact subsets of Rd are separated by a
positive distance (this is Problem 2.2.31). Combining Lemma 2.2.7 with an
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argument by induction, and recalling that the empty set has measure zero,
we obtain the following corollary.

Corollary 2.2.8. If F1, . . . , FN are disjoint compact subsets of Rd, then

∣∣∣∣
N⋃

k=1

Fk

∣∣∣∣
e

=

N∑

k=1

|Fk|e. ♦

Now we will prove that all compact subsets of Rd are measurable.

Theorem 2.2.9 (Compact Sets Are Measurable). Every compact subset
of Rd is Lebesgue measurable.

Proof. Let F be a nonempty compact subset of Rd, and choose ε > 0. By
Theorem 2.1.27, there exists an open set U ⊇ F such that |U | ≤ |F |e + ε.
Our goal is to show that |U \F |e ≤ ε.

Since U is open and F is closed, their relative complement U \F is open.
Applying Lemma 2.1.5, there exist countably many nonoverlapping boxes Qk

such that

U \F =
∞⋃

k=1

Qk.

For each finite N, let

RN =
N⋃

k=1

Qk. (2.12)

This is a compact set, and even though we have not yet proved that generic
compact sets are measurable, we know that this set RN is measurable because
it is a finite union of boxes, each of which is measurable. Further, because
Q1, . . . , QN are finitely many nonoverlapping boxes, Exercise 2.1.20 implies
that

|RN | =

N∑

k=1

|Qk|. (2.13)

Now, RN and F are disjoint compact sets that are each contained in U. Using
equation (2.13), Corollary 2.2.8, and monotonicity, we compute that

|F |e +

N∑

k=1

|Qk| = |F |e + |RN | = |F ∪ RN |e ≤ |U | ≤ |F |e + ε.

Since all of the quantities that appear on the preceding line are finite, we can

subtract |F |e from both sides to obtain
∑N

k=1 |Qk| ≤ ε. Finally, taking the
limit as N → ∞, we see that

|U \F |e =

∣∣∣∣
∞⋃

k=1

Qk

∣∣∣∣ ≤
∞∑

k=1

|Qk| = lim
N→∞

N∑

k=1

|Qk| ≤ ε.

Therefore F is measurable. ⊓⊔



58 2 Lebesgue Measure

An arbitrary closed set in Rd need not be compact, but we can write every
closed set E as a countable union of compact sets. There are many ways to
do this. For example,

E =
∞⋃

k=1

Fk, where Fk = E ∩ [−k, k]d.

Since the class of measurable sets is closed under countable unions, this gives
us the following result.

Corollary 2.2.10 (Closed Sets are Measurable). Every closed subset of
Rd is Lebesgue measurable. ♦

Next, we use the measurability of closed sets to prove that L is closed
under complements.

Theorem 2.2.11 (Closure Under Complements). If E ⊆ Rd is Lebesgue
measurable, then so is EC = Rd\E.

Proof. Since E is measurable, Theorem 2.1.27 implies that for each k ∈ N

we can find an open set Uk ⊇ E such that |Uk\E|e < 1
k . Let Fk be the

complement of Uk. Then Fk is closed, so it is measurable. Consequently, the
set

H =
∞⋃

k=1

Fk =
∞⋃

k=1

UC
k

is measurable, and H ⊆ EC. Let Z = EC\H. For each fixed j we have

Z = EC \
∞⋃

k=1

UC
k ⊆ EC\UC

j = Uj \E,

and therefore

|Z|e ≤ |Uj \E|e <
1

j
.

Since this is true for every j ∈ N, it follows that |Z|e = 0. Hence Z is
measurable, so EC = H ∪ Z is measurable as well. ⊓⊔

As corollaries of Theorem 2.2.11, we immediately obtain two additional
closure results. First, the intersection of any countable collection of measur-
able sets is measurable.

Corollary 2.2.12 (Closure Under Countable Intersections). If the sets
E1, E2, . . . ⊆ Rd are each Lebesgue measurable, then so is E =

T

Ek. ♦

Second, if A and B are both measurable sets, then their relative comple-
ment A\B is also measurable.

Corollary 2.2.13 (Closure Under Relative Complements). If A and B
are Lebesgue measurable subsets of Rd, then so is A\B = A ∩ BC. ♦
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In summary, the collection L of Lebesgue measurable subsets of Rd is
closed under both countable unions and under complements. We have a name
for collections of sets that satisfy these properties.

Definition 2.2.14 (Sigma Algebra). Let X be a set, and let Σ be a family
of subsets of X (in other words, Σ ⊆ P(X), the power set of X). If:

(a) Σ is not empty,

(b) Σ is closed under complements, and

(c) Σ is closed under countable unions,

then Σ is called a σ-algebra of subsets of X. ♦

Using this terminology, the set L of Lebesgue measurable subsets of Rd

is a σ-algebra of subsets of Rd. Abstract σ-algebras are important for the
construction of measures other than Lebesgue measure on Rd, and for defining
measures on more general domains.

2.2.3 Countable Additivity

It still remains to prove that Lebesgue measure is countably additive on dis-
joint measurable sets. To do this, we will need the following characterization
of measurable sets in terms of approximations from within by closed sets.

Lemma 2.2.15. A set E ⊆ Rd is Lebesgue measurable if and only if for each
ε > 0 there exists a closed set F ⊆ E such that |E\F |e < ε.

Proof. ⇒. Suppose that E is measurable. Then EC = Rd\E is measurable,
so there exists an open set U ⊇ EC such that |U \EC| < ε. Then F = UC is
closed and satisfies E\F = U \EC, so |E\F | < ε.

⇐. Suppose that for every ε > 0 there exists a closed set F ⊆ E such that
|E\F |e < ε. Then U = FC is open, and U ⊇ EC. Further, U \EC = E\F ,
so |U \EC|e = |E\F |e < ε. Therefore EC is measurable, so E is measurable
as well. ⊓⊔

We have now assembled the tools that we need to prove that Lebesgue
measure is countably additive on the class of measurable sets.

Theorem 2.2.16 (Countable Additivity). If E1, E2, . . . are disjoint,
Lebesgue measurable subsets of Rd, then

∣∣∣∣
∞⋃

k=1

Ek

∣∣∣∣ =
∞∑

k=1

|Ek|. (2.14)
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Proof. Step 1. Assume first that each set Ek is bounded. From subadditivity
we obtain ∣∣∣∣

∞⋃
k=1

Ek

∣∣∣∣ ≤
∞∑

k=1

|Ek|,

so our task is to prove the opposite inequality.
Fix ε > 0. By Lemma 2.2.15, there exists a closed set Fk ⊆ Ek such that

|Ek\Fk| <
ε

2k
. (2.15)

Since Ek is bounded, Fk is compact. Hence {Fk}k∈N is a collection of disjoint
compact sets. Let N be any finite positive integer. Then, by using Corollary
2.2.8 and monotonicity, we see that

N∑

k=1

|Fk| =

∣∣∣∣
N⋃

k=1

Fk

∣∣∣∣ ≤
∣∣∣∣

N⋃
k=1

Ek

∣∣∣∣ ≤
∣∣∣∣
∞⋃

k=1

Ek

∣∣∣∣.

Taking the limit as N → ∞,

∞∑

k=1

|Fk| = lim
N→∞

N∑

k=1

|Fk| ≤
∣∣∣∣
∞⋃

k=1

Ek

∣∣∣∣. (2.16)

Therefore

∞∑

k=1

|Ek| =
∞∑

k=1

|Fk ∪ (Ek\Fk)|

≤
∞∑

k=1

(
|Fk| + |Ek\Fk|

)
(by finite subadditivity)

≤
∞∑

k=1

(
|Fk| +

ε

2k

)
(by equation (2.15))

=

( ∞∑

k=1

|Fk|
)

+ ε

≤
∣∣∣∣
∞⋃

k=1

Ek

∣∣∣∣ + ε (by equation (2.16)).

Since ε is arbitrary, equation (2.14) follows.

Step 2. Now assume that E1, E2, . . . are arbitrary disjoint measurable sub-
sets of Rd. Set

Ej
k =

{
x ∈ Ek : j − 1 ≤ ‖x‖ < j

}
, for j, k ∈ N.
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Then {Ej
k}k,j is a countable collection of disjoint bounded measurable sets.

For each fixed k ∈ N we have

∞⋃
j=1

Ej
k = Ek, (2.17)

and furthermore
∞⋃

k=1

∞⋃
j=1

Ej
k =

∞⋃
k=1

Ek = E. (2.18)

Therefore
∣∣∣∣
∞⋃

k=1

Ek

∣∣∣∣ =

∣∣∣∣
∞⋃

k=1

∞⋃
j=1

Ej
k

∣∣∣∣ (by equation (2.18))

=

∞∑

k=1

∞∑

j=1

|Ej
k| (by Step 1)

=
∞∑

k=1

∣∣∣∣
∞⋃

j=1

Ej
k

∣∣∣∣ (by Step 1)

=

∞∑

k=1

|Ek| (by equation (2.17)). ⊓⊔

It is worth noting that what makes Step 2 of the preceding proof possible
is the fact that Rd, whose measure is infinite, can be written as the union
of countably many measurable sets that each have finite measure (in the
language of abstract measure theory, this says that Lebesgue measure on Rd

is σ-finite). While simple, this observation is extremely useful, as it often
allows us to reduce issues about generic sets to sets that have finite measure.
There are many ways to write Rd as a countable union of sets that have finite
measures; here are a few typical examples.

(a) Rd =
S∞

n=1Bn(0).

(b) Rd =
S∞

n=1

{
x ∈ Rd : n − 1 ≤ ‖x‖ < n

}
.

(c) Rd =
S

k∈Zd (Q + k) where Q = [0, 1]d.

The sets Bn(0) in the union in (a) are not disjoint, whereas the sets in the
union in (b) are disjoint. Although the sets in the union in (c) are not disjoint,
they are nonoverlapping closed cubes.

Combining Theorem 2.2.16 with the fact that the boundary of a box has
measure zero, we obtain the following result.

Corollary 2.2.17. If {Qk} is a countable collection of nonoverlapping boxes,
then

∣∣S

Qk

∣∣ =
∑ |Qk|.

Proof. The interiors of the boxes Qk are disjoint. Further, ∂Qk has measure
zero for every k, so Z =

S

∂Qk also has measure zero. Applying countable
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additivity, we conclude that

∣∣∣
⋃
k

Qk

∣∣∣ =
∣∣∣
(⋃

k

Q◦
k

)
∪ Z

∣∣∣ =
∑

k

|Q◦
k| + |Z| =

∑

k

|Qk| + 0. ⊓⊔

2.2.4 Equivalent Formulations of Measurability

As we have seen, the collection L of all Lebesgue measurable subsets of Rd

is closed under countable unions and complements. Since L contains all of
the open and closed subsets of Rd, it must therefore also contain all of the
following types of sets.

Definition 2.2.18 (Gδ-Sets and Fσ-Sets).

(a) A set H ⊆ Rd is a Gδ-set if there exist countably many open sets Uk such
that H =

T

Uk.

(b) A set H ⊆ Rd is an Fσ-set if there exist countably many closed sets Fk

such that H =
S

Fk. ♦

The symbol σ in this definition is reminiscent of the word “sums” and
hence unions, while δ suggests the word “difference” and hence intersec-
tions. More precisely, Fσ is derived from the French words fermé (closed)
and somme (union), while Gδ is derived from the German Gebiet (area,
neighborhood, open set) and Durchschnitt (average, intersection).

The half-open interval [a, b) is neither an open nor a closed subset of R,
but it is both a Gδ-set and an Fσ-set because we can write

∞⋂
k=1

(
a − 1

k , b
)

= [a, b) =
∞⋃

k=1

[
a, b − 1

k

]
. (2.19)

Here are some additional examples.

Example 2.2.19. (a) Let Q = {rk}k∈N be an enumeration of the set of ratio-
nals. Since Q is a countable union of singletons, each of which is closed, Q is
an Fσ-set.

(b) Let rk be as in part (a), and for each k let Uk be the complement of
the point rk:

Uk = R\{rk} = (−∞, rk) ∪ (rk,∞), for k ∈ N. (2.20)

The set Uk is open and contains every point in R except rk. Consequently

∞⋂
k=1

Uk = R\Q.

Hence R\Q, the set of irrationals, is a Gδ-set.
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(c) Could the set of rationals be a Gδ-set? If it were, then we could write
Q =

T

Vk where each Vk is open. Since Vk contains Q, it is dense in R. The
sets Uk defined in equation (2.20) are also dense in R, and the intersection of
all of the Uk and Vk is

(
∞⋂

k=1

Vk

)
T

(
∞⋂

k=1

Uk

)
= Q

T

(R\Q) = ∅.

However, the Baire Category Theorem implies that a countable intersection
of open, dense subsets of R must be nonempty (for the statement and a
proof of the Baire Category Theorem, see [Heil11, Thm. 2.21] or [Heil18,
Thm 2.11.3]). This is a contradiction, so we conclude that Q cannot be a
Gδ-set. ♦

We can keep going and define an Fσδ-set to be a countable intersection
of Fσ-sets, a Gδσ-set to be a countable union of Gδ-sets, an Fσδσ-set to be
a countable union of Fσδ-sets, and so forth. All of these sets are Lebesgue
measurable (but the collection of all such sets does not exhaust the family L;
see [Fol99, Sec. 1.6]).

Our next lemma shows that every set E, measurable or not, can be sur-
rounded by a Gδ-set that has exactly the same measure as E.

Lemma 2.2.20. Let E be a subset of Rd.

(a) There exists a Gδ-set H ⊇ E such that |E|e = |H|.
(b) We can arrange the set H in part (a) to have the form H =

T

Vk where
V1 ⊇ V2 ⊇ · · · is a nested decreasing sequence of open sets.

Proof. (a) If |E|e = ∞, then we can take H = Rd. Otherwise, applying
Theorem 2.1.27, for each k ∈ N there exists an open set Uk ⊇ E such that
|Uk| < |E|e + 1

k . Then H =
T

Uk is a Gδ-set and E ⊆ H ⊆ Uk for every k.
Therefore, by monotonicity, |E|e ≤ |H| ≤ |Uk| ≤ |E|e + 1

k . This is true for
every k, so |E|e = |H|.

(b) Using the sets Uk from part (a), set Vk = U1 ∩ · · · ∩ Uk. ⊓⊔

It does not follow from Lemma 2.2.20 that H \E has measure zero. In fact,
this is one of the equivalent conditions for measurability of E given in the
next lemma.

Lemma 2.2.21. If E ⊆ Rd, then the following three statements are equiva-
lent.

(a) E is Lebesgue measurable.

(b) E = H \Z where H is a Gδ-set and |Z| = 0.

(c) E = H ∪ Z where H is an Fσ-set and |Z| = 0.
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Proof. (a) ⇒ (b). This argument is a small refinement of the proof of Lemma
2.2.20. Suppose that E is measurable. Then for each k ∈ N we can find an
open set Uk ⊇ E such that |Uk\E| < 1/k. Set H =

T

Uk and let Z = H \E.
Then H is a Gδ-set, H ⊇ E, and Z = H \E ⊆ Uk\E for every k. Hence
|Z|e ≤ |Uk\E| < 1/k for every k, so |Z| = 0.

(b) ⇒ (a). If E = H \Z where H is a Gδ-set and |Z| = 0, then E is
measurable since both H and Z are measurable.

(a) ⇔ (c). By making use of Lemma 2.2.15, this argument is similar to the
proof of (a) ⇔ (b). ⊓⊔

If f : Rn → Rm is a continuous function then, by definition, the inverse
image of any open subset of Rn under f is an open subset of Rm. However,
the direct image of an open set under a continuous function need not be
open in general (consider the image of the open interval U = (0, 2π) under
the continuous function f(x) = sinx). Even so, the following exercise shows
that if f : Rn → Rm is continuous, then the direct image of a compact set
under f is compact, and the direct image of an Fσ set is another Fσ set.

Exercise 2.2.22. Suppose that f : Rn → Rm is a continuous function. Prove
that the following statements hold.

(a) f maps compact sets to compact sets, i.e.,

K ⊆ Rn is compact =⇒ f(K) ⊆ Rm is compact.

(b) f maps Fσ-sets to Fσ-sets, i.e.,

E ⊆ Rn is an Fσ-set =⇒ f(E) ⊆ Rm is an Fσ-set. ♦

2.2.5 Carathéodory’s Criterion

As presented in Definition 2.2.1, our definition of Lebesgue measurable sets is
formulated in terms of the existence of surrounding open sets. Lemma 2.2.21
likewise interprets measurability in terms of sets that have other topological
properties. In contrast, the equivalent formulation of measurability given in
the next theorem does not (directly) involve topology. This criterion says that
a set E is measurable if and only if it has the property that when any other
set A is given, the exterior measures of the two disjoint pieces A ∩ E and
A\E must precisely sum to the exterior measure of A (see the illustration in
Figure 2.5).

Theorem 2.2.23 (Carathéodory’s Criterion). A set E ⊆ Rd is Lebesgue
measurable if and only if

∀A ⊆ Rd, |A|e = |A ∩ E|e + |A\E|e. (2.21)
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Fig. 2.5 If E is measurable, then |A∩E|e and |A\E|e must sum to |A|e for every set A.

Proof. ⇒. Suppose that E is measurable, and fix any set A ⊆ Rd. Since
A = (A ∩ E) ∪ (A\E), subadditivity implies that

|A|e ≤ |A ∩ E|e + |A\E|e.

By Lemma 2.2.20, there exists a Gδ-set H ⊇ A such that |H| = |A|e. We can
write H as the disjoint union H = (H∩E)∪(H \E). Since Lebesgue measure
is countably additive on measurable sets and since H and E are measurable,
we conclude that

|A|e = |H| = |H ∩ E| + |H \E| (countable additivity)

≥ |A ∩ E|e + |A\E|e (monotonicity).

⇐. Let E be any subset of Rd that satisfies equation (2.21). For each
k ∈ N, let Ek = E ∩Bk(0). Fix ε > 0, and let U be an open set that contains
Ek and satisfies

|Ek|e ≤ |U | ≤ |Ek|e + ε.

By replacing U with U ∩Bk(0) if necessary, we can assume that U ⊆ Bk(0).
Using equation (2.21), we compute that

|Ek|e + |U \Ek|e = |U ∩ Ek|e + |U \Ek|e (since Ek ⊆ U)

= |U ∩ E|e + |U \E|e (since U ⊆ Bk(0))

= |U | (by equation (2.21))

≤ |Ek|e + ε.

Since |Ek|e is finite, we can subtract it from both sides to obtain |U \Ek|e ≤ ε.
Thus Ek is measurable, and therefore E =

S

Ek is measurable as well. ⊓⊔
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2.2.6 Almost Everywhere and the Essential Supremum

We introduce some terminology related to sets whose measure is zero.

Notation 2.2.24 (Almost Everywhere). A property that holds at all
points of a set E except possibly for those that lie in a subset Z ⊆ E whose
measure is zero is said to hold almost everywhere on E. We often abbreviate
“almost everywhere” by “a.e.” ♦

Example 2.2.25. (a) The Cantor set C has measure zero. Its characteristic
function χC satisfies χC(x) = 0 for all x ∈ R with the exception of those
points x that belong to C. Since |C| = 0, we therefore say that

χC(x) = 0 for almost every x,

and we abbreviate this by writing χC = 0 a.e.

(b) Define f : [0,∞) → [0,∞] by f(x) = 1/x for x > 0 and f(0) = ∞.
This function takes finite values at all but a single point. Thus the set

Z = {x ∈ [0,∞) : f(x) = ±∞}

where f is not finite has measure zero, so we say that

f(x) is finite for almost every x ∈ [0,∞),

or simply that f is finite a.e.

(c) If f : E → C is a complex-valued function, then f(x) is never ±∞.
Therefore every complex-valued function is finite at every point, where we
interpret the word “finite” in this context to mean “not ±∞.” As a conse-
quence, every complex-valued function is finite a.e. ♦

To motivate the next definition, let f : E → [−∞,∞] be an extended real-
valued function. One way to express the supremum of f on E is by the
formula

sup
x∈E

f(x) = inf
{
M ∈ [−∞,∞] : f(x) ≤ M for all x ∈ E

}
.

The essential supremum of f will be defined by a similar formula, except that
we will ignore sets of measure zero. That is, instead of taking the infimum
over those M such that f(x) ≤ M for all x ∈ E, we take the infimum over
those M for which the inequality f(x) ≤ M holds almost everywhere on E.
Here is the precise definition.

Definition 2.2.26 (Essential Supremum). Let E be a subset of Rd.

(a) The essential supremum of a function f : E → [−∞,∞] is

esssup
x∈E

f(x) = inf
{
M ∈ [−∞,∞] : f(x) ≤ M for a.e. x ∈ E

}
. (2.22)
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(b) If f is either an extended real-valued or complex-valued function on E,
then we say that f is essentially bounded if

esssup
x∈E

|f(x)| < ∞. ♦

Example 2.2.27. Consider f(x) = xχ
Q(x) for x ∈ R. This function is zero

whenever x is irrational, but it takes arbitrarily large values at rational x.
Hence f is unbounded and supx∈R f(x) = ∞. On the other hand, f(x) = 0
for almost every x ∈ R, so

esssup
x∈R

|f(x)| = esssup
x∈R

f(x) = 0.

Therefore, even though f is unbounded, it is essentially bounded. ♦

Here are some properties of the essential supremum.

Lemma 2.2.28. If f : E → [−∞,∞] and we set m = esssupx∈E f(x), then
the following statements hold.

(a) f(x) ≤ m for a.e. x ∈ E.

(b) m is the smallest extended real number M such that f ≤ M a.e.

Proof. (a) If k ∈ N then m + 1
k > m, so, by the definition of the essential

supremum, we must have f(x) ≤ m + 1
k for all x except those in a set Zk of

measure zero. Let Z =
S

Zk. If x /∈ Z then x /∈ Zk for any k, so f(x) ≤ m+ 1
k

for every k. Therefore f(x) ≤ m for all x /∈ Z.

(b) This follows from part (a) and the definition of an infimum. ⊓⊔

By applying Lemma 2.2.28 to the absolute value of a function, we obtain
the following corollary.

Corollary 2.2.29. Let E ⊆ Rd, and let f be a function on E that is either
extended real-valued or complex-valued.

(a) If f is essentially bounded, then there exists a finite constant M ≥ 0 such
that |f(x)| ≤ M for a.e. x. In particular, f is finite a.e.

(b) esssupx∈E |f(x)| = 0 if and only if f = 0 a.e.

Proof. (a) If f is essentially bounded, then M = esssup |f(x)| < ∞. Applying
Lemma 2.2.28(a) to the function |f |, we see that |f(x)| ≤ M < ∞ for almost
every x ∈ E.

(b) If esssup |f(x)| = 0, then part (a) of Lemma 2.2.28 implies that
|f(x)| ≤ 0 a.e., and therefore f = 0 a.e. ⊓⊔

While every essentially bounded function is finite a.e., there are functions
that are finite a.e. but not essentially bounded. An example is the function
f(x) = 1/x considered in Example 2.2.25(b).

The essential supremum of a function is always less than or equal to its
supremum. According to the following exercise, these two quantities coincide
for continuous functions whose domain is an open set.
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Exercise 2.2.30. Let U be a nonempty open subset of Rd, and suppose that
f : U → R is continuous. Prove that the essential supremum of f coincides
with its supremum, i.e.,

f is continuous on U =⇒ esssup
x∈U

f(x) = sup
x∈U

f(x). ♦

For dimension d = 1, a small extension of Exercise 2.2.30 shows that if I
is any type of interval in R and f : I → R is continuous, then the essential
supremum of f equals its supremum on I. However, if E is a generic measur-
able set and f : E → R is continuous, then the essential supremum of f need
not equal its supremum on E (this is Problem 2.2.45).

Problems

2.2.31. Suppose that F and K are nonempty, disjoint subsets of Rd such that
F is closed and K is compact. Prove that dist(F,K) > 0. Exhibit nonempty
disjoint closed sets E and F such that dist(E,F ) = 0.

2.2.32. Show that if A and B are any measurable subsets of Rd, then

|A ∪ B| + |A ∩ B| = |A| + |B|.

2.2.33. Assume that {En}n∈N is a sequence of measurable subsets of Rd such
that |Em ∩ En| = 0 whenever m 6= n. Prove that |SEn| =

∑ |En|.

2.2.34. Let Sr = {x ∈ Rd : ‖x‖ = r} be the sphere of radius r in Rd centered
at the origin. Prove that |Sr| = 0.

2.2.35. Suppose that E is a measurable subset of R and |E ∩ (E + t)| = 0
for every t 6= 0. Prove that |E| = 0.

2.2.36. Let E ⊆ Rm and F ⊆ Rn be measurable sets. Assume that P(x, y) is
a statement that is either true or false for each pair (x, y) ∈ E × F. Suppose
that

for every x ∈ E, P(x, y) is true for a.e. y ∈ F.

Must it then be true that

for a.e. y ∈ F, P(x, y) is true for every x ∈ E?

2.2.37. Given a set E ⊆ Rd, prove that the following three statements are
equivalent.

(a) E is Lebesgue measurable.

(b) For every ε > 0 there exists an open set U and a closed set F such
that F ⊆ E ⊆ U and |U \F | < ε.
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(c) There exists a Gδ-set G and an Fσ-set H such that H ⊆ E ⊆ G and
|G\H| = 0.

2.2.38. Given a set E ⊆ Rd with |E|e < ∞, show that the following two
statements are equivalent.

(a) E is Lebesgue measurable.

(b) For each ε > 0 we can write E = (S ∪ A) \ B where S is a union of

finitely many nonoverlapping boxes and |A|e, |B|e < ε.

2.2.39. Let E be a subset of Rd such that 0 < |E|e < ∞. Given 0 < α < 1,
prove that there exists a cube Q such that |E ∩ Q|e ≥ α |Q|.

Remark: This problem will be used in the proof of Theorem 2.4.3.

2.2.40. Let E be a measurable subset of Rd. Show that if A is any subset of
Rd that is disjoint from E, then |E ∪ A|e = |E| + |A|e.
2.2.41. Construct a two-dimensional analogue of the Cantor set C as follows.
Subdivide the unit square [0, 1]2 into nine subsquares, and keep only the
four closed corner squares. Repeat this process forever, and let S be the
intersection of all of these sets. Prove that S has measure zero, equals its
own boundary, has empty interior, and equals C × C.

2.2.42. This problem will show that there exist closed sets with positive
measure that have empty interior.

The Cantor set construction given in Example 2.1.23 removes 2n−1 inter-
vals from Fn, each of length 3−n, to obtain Fn+1. Modify this construction
by removing 2n−1 intervals from Fn that each have length an instead of 3−n,
and set P = ∩Fn.

(a) Show that P is closed, P contains no open intervals, P ◦ = ∅, P = ∂P,
and U = [0, 1]\P is dense in [0, 1].

(b) Show that if an → 0 quickly enough, then |P | > 0. In fact, given
0 < ε < 1, exhibit an such that |P | = 1 − ε.

Remark: P is called a Smith–Volterra–Cantor set or a fat Cantor set.

2.2.43. Define the inner Lebesgue measure of a set A ⊆ Rd to be

|A|i = sup
{
|F | : F is closed and F ⊆ A

}
.

Prove the following statements.

(a) If A is Lebesgue measurable, then |A|e = |A|i.
(b) If |A|e < ∞ and |A|e = |A|i, then A is Lebesgue measurable.

(c) There exists a nonmeasurable set A that satisfies |A|e = |A|i = ∞
(assume that nonmeasurable sets exist; this will be proved in Section 2.4).

(d) If E ⊆ Rd is Lebesgue measurable and A ⊆ E, then

|E| = |A|i + |E\A|e.



70 2 Lebesgue Measure

2.2.44. Let E be a measurable subset of Rd such that |E| < ∞. Suppose
that A and B are disjoint subsets of E such that E = A ∪ B. Show that

A and B are measurable ⇐⇒ |E| = |A|e + |B|e.

2.2.45. Exhibit a set E and a function f : E → R that is continuous on E,
yet esssupx∈E |f(x)| 6= supx∈E |f(x)|.

2.2.46. (a) Show that the complement of a Gδ-set is an Fσ-set, and the
complement of an Fσ-set is a Gδ-set.

(b) Show that every countable set is an Fσ-set.

(c) Is any countable set a Gδ-set? Is every countable set a Gδ-set? Is
{1/n}n∈N a Gδ-set?

(d) Exhibit a subset of R that belongs to one of the classes Gδσ, Fσδ, Gδσδ

Fσδσ, etc., but is not a Gδ-set or an Fσ-set.

2.2.47. Given a function f : Rd → C, the oscillation of f at the point x is

oscf (x) = inf
δ>0

sup
{
|f(y) − f(z)| : y, z ∈ Bδ(x)

}
.

Prove the following statements.

(a) f is continuous at x if and only if oscf (x) = 0.

(b) For each ε > 0, the set {x ∈ Rd : oscf (x) ≥ ε} is closed.

(c) D = {x ∈ Rd : f is discontinuous at x} is an Fσ-set, and therefore the
set of continuities of f is a Gδ-set.

2.2.48. Given A ⊆ Rd, prove the following statements.

(a) There exists a measurable set H ⊇ A that satisfies |A∩E|e = |H ∩E|
for every measurable set E ⊆ Rd.

(b) We can choose the set H in part (a) to be a Gδ-set.

(c) If {Ek}k∈N is any collection of disjoint measurable subsets of Rd, then

∣∣∣∣A ∩
(

∞⋃
k=1

Ek

)∣∣∣∣
e

=
∞∑

k=1

|A ∩ Ek|e.

2.2.49. (a) Let A be any subset of Rd, and let L(A) =
{
E ∩A : E ∈ L(Rd)

}

be the restriction of all Lebesgue measurable sets to A. Show that L(A) is a
σ-algebra on A.

(b) Prove that if A is Lebesgue measurable, then L(A) consists of all
subsets of A that are Lebesgue measurable, i.e.,

L(A) =
{
E ⊆ A : E ∈ L(Rd)

}
.
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2.2.50. Let X be a set, and let Σ be the collection of all E ⊆ X such that
at least one of E or X \E is countable. Prove that Σ is a σ-algebra on X.

2.2.51. (a) Given a set X and σ-algebras Σ1 and Σ2 on X, prove that

Σ1 ∩ Σ2 =
{
A ⊆ X : A ∈ Σ1 and A ∈ Σ2

}

is a σ-algebra on X.

(b) Prove that the intersection of an arbitrary collection of σ-algebras on X
is a σ-algebra on X.

(c) Let E be a collection of subsets of X. Show that

Σ(E) =
⋂ {

Σ : Σ is a σ-algebra on X and E ⊆ Σ
}

is a σ-algebra on X. (We say that Σ(E) is the σ-algebra generated by E .)

2.3 More Properties of Lebesgue Measure

We will prove several important properties of Lebesgue measurable sets in
this section. In particular, we will show in Section 2.3.1 that if E1 ⊆ E2 ⊆ · · ·
is an increasing sequence of nested measurable sets and E =

S

Ek, then the
measure of Ek converges to the measure of E as k → ∞ (but there is an
interesting twist for nested decreasing sequences of sets; see Example 2.3.3).
In Section 2.3.2 we will prove that the measure of a Cartesian product E×F
is the product of the measures of E and F. Finally, in Section 2.3.3 we will
prove that Lebesgue measure is invariant under rotations, and more generally
we will determine the relationship between the measure of a measurable set E
and the measure of its image L(E) under a linear transformation L : Rd → Rd.

2.3.1 Continuity from Above and Below

Suppose that A is a measurable set that is contained in another measurable
set B. Monotonicity tells us that |A| ≤ |B|, but we can refine this a little
further. The sets A and B\A are measurable and disjoint and their union
is B, so by countable additivity we know that

|B| = |A| + |B\A|. (2.23)

If |A| = ∞ then both sides of equation (2.23) are infinity. If |A| < ∞ then
we can take one more step and subtract |A| from both sides of the equation
to obtain |B\A| = |B| − |A|. As long as |A| is finite, this equality holds in
the extended real sense, even if |B| is infinite. We formalize this as follows.
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Lemma 2.3.1. If A ⊆ B are Lebesgue measurable sets and |A| < ∞ then

|B\A| = |B| − |A|, (2.24)

in the sense that if |B| < ∞ then both sides of equation (2.24) are finite and
equal, while if |B| = ∞ then both sides of equation (2.24) are ∞. ♦

We will use Lemma 2.3.1 to determine the behavior of the measures of a
sequence of nested increasing measurable sets E1 ⊆ E2 ⊆ · · · . Let E =

S

Ek,
and write E as the following countable union of disjoint measurable sets:

E = E1 ∪ (E2\E1) ∪ (E3\E2) ∪ · · · .

Applying countable additivity gives

|E| = |E1| + |E2\E1| + |E3\E2| + · · · . (2.25)

By Lemma 2.3.1, if Ek has finite measure, then |Ek\Ek−1| = |Ek| − |Ek−1|.
This suggests that we can turn equation (2.25) into a telescoping sum, at
least if every set Ek has finite measure. In fact, in this case we see that

|E| = |E1| +

∞∑

k=2

|Ek\Ek−1|

= |E1| + lim
N→∞

N∑

k=2

(
|Ek| − |Ek−1|

)

= |E1| +
(

lim
N→∞

|EN |
)

− |E1|

= lim
N→∞

|EN |.

On the other hand, if any one of the sets Ek has infinite measure, then
monotonicity implies that |E| = ∞ = lim |Ek|. In any case, we have shown
that the measure of Ek increases to the measure of E. We call this property
continuity from below, and state it precisely as the following theorem.

Theorem 2.3.2 (Continuity from Below). If E1, E2, . . . are measurable
subsets of Rd such that E1 ⊆ E2 ⊆ · · · , then |E1| ≤ |E2| ≤ · · · and

∣∣∣∣
∞⋃

k=1

Ek

∣∣∣∣ = lim
k→∞

|Ek|. ♦

In contrast, the following example demonstrates that the measure of nested
decreasing sets E1 ⊇ E2 ⊇ · · · need not converge to the measure of

T

Ek.

Example 2.3.3. Let Bk(0) be the open ball of radius k centered at the origin,
and let Ek be its complement:
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Ek = Rd\Bk(0) =
{
x ∈ Rd : ‖x‖ ≥ k

}
.

Each Ek is measurable, and E1 ⊇ E2 ⊇ · · · . Furthermore, the intersection
of all of these sets is

T

Ek = ∅. Therefore

∣∣∣∣
∞⋂

k=1

Ek

∣∣∣∣ = 0 yet lim
k→∞

|Ek| = ∞. ♦

Although “continuity from above” does not always hold, the next theorem
shows that if all of the sets Ek have finite measure (or finite measure from
some point onward), then continuity from above applies to that sequence.

Theorem 2.3.4 (Continuity from Above). If E1 ⊇ E2 ⊇ · · · are mea-
surable subsets of Rd and |Ek| < ∞ for some k, then |E1| ≥ |E2| ≥ · · ·
and ∣∣∣∣

∞⋂
k=1

Ek

∣∣∣∣ = lim
k→∞

|Ek|.

Proof. Suppose that E1 ⊇ E2 ⊇ · · · are measurable and |Ek| < ∞ for some k.
Since our sets are nested decreasing, by ignoring E1, . . . , Ek−1 and reindexing,
we may assume that |E1| < ∞.

Set Fj = E1\Ej . Then F1 ⊆ F2 ⊆ · · · . Further, since |E1| < ∞, we have
|Fj | = |E1| − |Ej |. Also

E1 \
(

∞⋂
k=1

Ek

)
=

∞⋃
j=1

Fj ,

so we compute that

|E1| −
∣∣∣∣
∞⋂

k=1

Ek

∣∣∣∣ =

∣∣∣∣
∞⋃

j=1

Fj

∣∣∣∣ (by Lemma 2.3.1)

= lim
j→∞

|Fj | (by continuity from below)

= lim
j→∞

(
|E1| − |Ej |

)
(by Lemma 2.3.1)

= |E1| − lim
j→∞

|Ej |.

All of the above quantities are finite, so we can rearrange and obtain the
desired result. ⊓⊔

Combining continuity from above with Lemma 2.2.20 gives us the following
corollary.

Corollary 2.3.5. If E ⊆ Rd is measurable and |E| < ∞, then there exist
open sets V1 ⊇ V2 ⊇ · · · ⊇ E such that limk→∞ |Vk| = |E|.
Proof. By Lemma 2.2.20, there exists a Gδ-set H that contains E and has
exactly the same measure as E. Furthermore, that lemma tells us that we
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can find a sequence of nested decreasing open sets U1 ⊇ U2 ⊇ · · · whose
intersection is H. By Theorem 2.1.27, there exists an open set U ⊇ H such
that |U | ≤ |H| + ε < ∞. Therefore, if we set Vk = U ∩ Uk then we ob-
tain a decreasing sequence of open sets Vk, each with finite measure, whose
intersection is H. Consequently, continuity from above implies that

lim
k→∞

|Vk| = |H| = |E|. ⊓⊔

2.3.2 Cartesian Products

Now we will establish the seemingly “obvious” fact that the measure of a
Cartesian product

E × F =
{
(x, y) : x ∈ E, y ∈ F

}

of measurable sets E and F equals the product of the measures of the two
sets. This is certainly true if E and F are boxes. For general measurable sets
E and F, we can easily obtain an inequality that relates |E × F | to |E| |F |,
for if {Qk}k is a covering of E by boxes and {Rℓ}ℓ is a covering of F by boxes
then {Qk × Rℓ}k,ℓ is a covering of E × F by boxes, and therefore

|E × F | ≤
∑

k,ℓ

vol(Qk × Rℓ) =

(∑

k

vol(Qk)

)(∑

ℓ

vol(Rℓ)

)
.

If E and F have finite measure, then by taking the infimum over all such
coverings of E and F we obtain |E × F | ≤ |E| |F | (and, with a bit more
care, we can likewise show that |E × F | ≤ |E| |F | holds if either |E| = ∞ or
|F | = ∞, the difficult cases being where the measure of one set is zero and
the other is infinite).

However, it is not so easy to prove that |E × F | must equal |E| |F |. We
present the proof as an extended exercise that proceeds through cases to
ultimately show that equality holds for arbitrary measurable sets. This exer-
cise applies many of the techniques and properties of Lebesgue measure that
we have established so far, including countable additivity, continuity from
above, and the equivalent characterizations of measurability that appear in
Lemma 2.2.21. As declared in the Preliminaries, we use the convention that
0 · ∞ = 0. Indeed, the next exercise is a good illustration of why this is the
“correct” way to define 0 · ∞, at least in the context of measure theory.

Exercise 2.3.6. (a) Observe that if Q ⊆ Rm and R ⊆ Rn are boxes, then
Q × R is a box in Rm+n and |Q × R| = |Q| |R| (easy).

(b) Suppose that U ⊆ Rm and V ⊆ Rn are nonempty open sets. Show that
U × V is open, and |U × V | = |U | |V |.
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(c) Suppose that G ⊆ Rm and H ⊆ Rn are bounded Gδ-sets. Show that G×H
is a Gδ-set, and use Lemma 2.2.20(b) to prove that |G × H| = |G| |H|.

(d) Suppose that E ⊆ Rm is a measurable set and Z ⊆ Rn satisfies |Z| = 0.
Prove that |E × Z| = 0 = |E| |Z|.

(e) Suppose that E ⊆ Rm and F ⊆ Rn are any measurable sets. Prove that
E × F is measurable and |E × F | = |E| |F |. ♦

We formalize the conclusion of Exercise 2.3.6 as a theorem.

Theorem 2.3.7 (Cartesian Products). If E ⊆ Rm and F ⊆ Rn are
Lebesgue measurable sets, then E × F ⊆ Rm+n is a Lebesgue measurable
subset of Rm+n, and

|E × F | = |E| |F |. ♦

2.3.3 Linear Changes of Variable

We have already seen that Lebesgue measure is invariant under translations,
and Problem 2.1.38 considered the behavior of Lebesgue measure under cer-
tain types of dilations. Now we want to consider the relation between the
measure of a set E ⊆ Rd and the measure of its image under an arbitrary
linear transformation L : Rd → Rd. We will show that if E is measurable,
then the measure of L(E) equals the measure of E multiplied by the abso-
lute value of the determinant of the transformation L. In particular, it follows
that Lebesgue measure is invariant under rotations. This seems like another
“obvious” property that should be trivial to establish, but the proof is not as
straightforward as it might appear at first glance (try to prove this directly
from the definition).

Before we can determine the measure of L(E), we must first establish that
L(E) is measurable. Contrary to what we might expect, it is not true that
the image of a measurable set under a generic continuous function need be
measurable! In fact, the following example shows that if n > m then we can
even find a linear function L : Rn → Rm that maps some measurable sets to
nonmeasurable sets.

Example 2.3.8. (a) Let N be any nonmeasurable subset of R (we will prove
that such sets exist in Section 2.4). As a subset of R2, E = N × {0} has
measure zero and therefore is a measurable subset of R2. However, if we
define L : R2 → R by L(x1, x2) = x1, then L is linear and E is measurable,
yet L(E) = N is not measurable. The same idea can be used to prove that
whenever m < n, there exists a linear function L : Rn → Rm that maps some
measurable subset of Rn to a nonmeasurable set in Rm.

(b) The situation is quite different when n < m. If L : Rn → Rm is linear
then range(L) is a subspace of Rm with dimension at most n. Consequently



76 2 Lebesgue Measure

range(L) is a proper subspace of Rm, and therefore it has measure zero (see
Problem 2.1.37). Thus if n < m then a linear function L : Rn → Rm maps
every subset of Rn to a set of measure zero. ♦

The following lemma shows that the question of whether a continuous
function maps measurable sets to measurable sets can be reduced to the
question of whether the function maps sets with measure zero to sets with
measure zero.

Lemma 2.3.9. Let f : Rn → Rm be a continuous function. Suppose that f
maps sets with measure zero to sets with measure zero, i.e.,

Z ⊆ Rn and |Z| = 0 =⇒ |f(Z)| = 0. (2.26)

Then f maps measurable sets to measurable sets, i.e.,

E ⊆ Rn is measurable =⇒ f(E) ⊆ Rm is measurable.

Proof. Assume that f is continuous and equation (2.26) holds. If E is an
arbitrary measurable subset of Rn then Lemma 2.2.21 tells us that E = H∪Z
where H is an Fσ-set and |Z| = 0. Therefore

f(E) = f(H ∪ Z) = f(H) ∪ f(Z).

Since f is continuous, Exercise 2.2.22 implies that f maps Fσ-sets to Fσ-sets.
Therefore f(H) is an Fσ-set. On the other hand, equation (2.26) implies that
f(Z) has measure zero. Therefore f(H) and f(Z) are both measurable, so
f(E) is measurable as well. ⊓⊔

This issue of whether a function maps sets with measure zero to sets with
measure zero is quite important. In particular, we will encounter this con-
dition again when we consider absolutely continuous functions in Chapter 6,
especially in connection with the Banach–Zaretsky Theorem (Theorem 6.3.1),
which gives several equivalent characterizations of absolutely continuous func-
tions.

In light of Lemma 2.3.9, we would like to find sufficient criteria that ensure
that a function maps sets with measure zero to sets with measure zero. The
next definition, which extends the notion of Lipschitz continuity introduced
for functions f : R → R in Definition 1.4.1 to functions f : Rn → Rm, will be
instrumental in this regard.

Definition 2.3.10 (Lipschitz Function). A function f : Rn → Rm is Lip-
schitz if there exists a constant K ≥ 0 such that

‖f(x) − f(y)‖ ≤ K ‖x − y‖, for all x, y ∈ Rn.

The number K is called a Lipschitz constant for f. ♦
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Thus, for a Lipschitz function there is some control over how far apart f(x)
and f(y) can be in comparison to the distance between the points x and y.
Every Lipschitz function is continuous, but not every continuous function is
Lipschitz. The following lemma shows that all linear functions from Rn to
Rm are Lipschitz.

Lemma 2.3.11. Every linear function L : Rn → Rm is Lipschitz.

Proof. Let {e1, . . . , en} be the standard basis for Rn. Then L(e1), . . . , L(en)
are finitely many vectors in Rm, so M = max{‖L(e1)‖, . . . , ‖L(en)‖} is a
finite number. Given a vector x = (x1, . . . , xn) = x1e1 + · · ·+ xnen ∈ Rn, we
have

‖L(x)‖ = ‖x1L(e1) + · · · + xnL(en)‖ (linearity)

≤ |x1| ‖L(e1)‖ + · · · + |xn| ‖L(en)‖ (Triangle Inequality)

≤ M

n∑

k=1

|xk| (definition of M)

≤ Mn1/2

( n∑

k=1

|xk|2
)1/2

(exercise)

= Mn1/2 ‖x‖.

Therefore, if x, y ∈ Rn, then by using the linearity of L we see that

‖L(x) − L(y)‖ = ‖L(x − y)‖ ≤ Mn1/2 ‖x − y‖.

Hence L is Lipschitz, with Lipschitz constant K = Mn1/2. ⊓⊔

For the rest of this section we will focus on the case m = n = d. We will
prove below that any Lipschitz function that maps Rd into itself must map
sets with measure zero to sets with measure zero. The key is the following
exercise, which bounds the measure of the image of a cube under a Lipschitz
map. Recall that continuous functions map compact sets to compact sets, so
f(Q) is actually a compact set in this exercise, and hence is measurable.

Exercise 2.3.12. Assume f : Rd → Rd is Lipschitz. Show that there exists
a constant C ≥ 0 such that |f(Q)| ≤ C |Q| for every cube Q ⊆ Rd. ♦

Now we prove that a Lipschitz function f : Rd → Rd maps measurable sets
to measurable sets (it is important here that the domain and codomain have
the same dimension).

Theorem 2.3.13. If f : Rd → Rd is Lipschitz, then f maps sets with measure
zero to sets with measure zero, and f maps measurable sets to measurable sets.
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Proof. Let C be the constant given by Exercise 2.3.12, and let Z be any
subset of Rd such that |Z| = 0. If we fix ε > 0, then there exists an open set
U ⊇ Z such that |U | < ε. We can write U as the union of countably many
nonoverlapping cubes Qk. Applying countable subadditivity and Exercise
2.3.12, we obtain

|f(Z)|e ≤ |f(U)| ≤
∞∑

k=1

|f(Qk)| ≤
∞∑

k=1

C |Qk| = C |U | < Cε.

Since ε is arbitrary, it follows that |f(Z)| = 0. Thus f maps sets of measure
zero to sets of measure zero. Lemma 2.3.9 therefore implies that f maps
measurable sets to measurable sets. ⊓⊔

Combining Lemma 2.3.11 with Theorem 2.3.13 yields the following result.
In contrast, in Section 5.1 we will construct a continuous (but nonlinear and
non-Lipschitz) function ϕ that maps a measurable set E to a nonmeasurable
set ϕ(E).

Corollary 2.3.14. Every linear function L : Rd → Rd maps sets with mea-
sure zero to sets with measure zero, and it maps measurable sets to measurable
sets. ♦

If L : Rd → Rd is linear, then there is a d × d matrix with real entries,
which we also call L, such that L(x) is simply the product of the matrix L
with the vector x. We identify the linear transformation L with the matrix L,
and use the two objects interchangeably. In particular, the determinant of the
transformation L is the determinant of the matrix L, and we say that L is
nonsingular or invertible if its determinant is nonzero. Using this notation,
the following theorem states that the measure of L(E) is |det(L)| times the
measure of E.

Theorem 2.3.15 (Linear Change of Variables). If L : Rd → Rd is linear
and E ⊆ Rd is Lebesgue measurable, then L(E) is a measurable subset of Rd

and
|L(E)| = |det(L)| |E|. ♦

We will present the proof of Theorem 2.3.15 in the form of an extended
exercise. Before doing so, we recall an important fact about linear trans-
formations on Euclidean space. Among the many factorization theorems for
matrices, the singular value decomposition, or SVD, states that a d×d matrix
L with real entries can be written in the form

L = W∆V T,

where V and W are d × d orthogonal matrices and ∆ is a nonnegative d × d
real diagonal matrix. An orthogonal matrix V is a square matrix with real
entries whose columns are orthonormal vectors (equivalently, a real square
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matrix V is orthogonal if and only if V TV = I). As a linear transformation,
an orthogonal matrix preserves both lengths and angles, and hence is a com-
position of rotations and flips. In particular, an orthogonal matrix V maps
the unit ball B1(0) in Rd bijectively onto itself, and the determinant of V
is ±1.

Consequently, if L = W∆V T is the SVD of L and s1, . . . , sd are the
diagonal entries of ∆, then

|det(L)| = det(∆) = s1 · · · sd.

We call s1, . . . , sd the singular numbers of L. In particular, L is invertible
if and only if each of its singular numbers is nonzero. The SVD of L is
closely related to the diagonalization of the symmetric matrix LTL. For more
details on the singular value decomposition of arbitrary real or complex m×n
matrices, we refer to [Str06, Sec. 6.3], [HJ90, Sec. 7.3], or [Heil18, Sec. 7.10].

The following exercise gives a proof of Theorem 2.3.15.

Exercise 2.3.16. Let Q0 = [0, 1]d be the unit cube in Rd. For each linear
transformation L : Rd → Rd, set

dL = |L(Q0)|.

Since L is linear, L(Q0) is a parallelepiped in Rd (though not necessarily
a rectangular parallelepiped). Eventually we will prove that the measure of
L(Q0) is precisely |det(L)|, but we do not know this yet. Prove the following
statements.

(a) |L(Q)| = dL |Q| for every cube Q ⊆ Rd.

(b) If L is nonsingular, then |L(U)| = dL |U | for every open set U ⊆ Rd.

(c) If L is nonsingular, then |L(E)| = dL |E| for every measurable set E ⊆ Rd.

(d) If ∆ is a diagonal matrix, then d∆ = |det(∆)|.
(e) If V is an orthogonal matrix, then dV = 1.

(f) If A and B are two nonsingular d × d matrices, then dAB = dA dB .

(g) Combine the previous steps and use the SVD to show that dL = |det(L)|
for every nonsingular d × d matrix L.

Finally, determine what modifications to the proof are necessary to show
that dL = 0 when L is singular (alternatively, find a different approach to
the singular case). ♦

Problems

2.3.17. Assume that E ⊆ Rd is measurable, 0 < |E| < ∞, and An ⊆ E are
measurable sets such that |An| → |E| as n → ∞. Prove that there exists a
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subsequence {Ank
}k∈N such that

∣∣T

Ank

∣∣ > 0. Show by example that this can
fail if |E| = ∞.

2.3.18. Prove that E ⊆ Rd is measurable if and only if for every box Q we
have |Q| = |Q ∩ E|e + |Q\E|e.

2.3.19. Let E be a measurable subset of Rd, and set f(t) = |E ∩ Bt(0)| for
t > 0. Prove the following statements (Problem 1.1.23 may be useful).

(a) f is monotone increasing and continuous on (0,∞).

(b) limt→0+ f(t) = 0.

(c) limt→∞ f(t) = |E|.
(d) If |E| < ∞, then f is uniformly continuous on (0,∞).

2.3.20. Given a measurable set E ⊆ Rd such that 0 < |E| ≤ ∞, prove the
following statements.

(a) There exists a measurable set A ⊆ E such that |A| > 0 and |E\A| > 0.

(b) There exist infinitely many disjoint measurable sets E1, E2, . . . con-
tained in E such that |Ek| > 0 for every k.

(c) If |E| < ∞, then we can choose the sets Ek in part (b) so that

|Ek| = 2−k |E|, for k ∈ N.

(d) There exist compact sets Kn ⊆ E such that limn→∞ |Kn| = |E|.
(e) If |E| = ∞, then there exist disjoint measurable sets A1, A2, . . . ⊆ E

such that |Ak| = 1 for every k ∈ N.

2.3.21. Let E be a measurable subset of Rd such that |E| > 0. Prove that
there exists a point x ∈ E such that for every δ > 0 we have |E ∩Bδ(x)| > 0.

2.3.22. Suppose that m > n and f : Rn → Rm is a Lipschitz, but not neces-
sarily linear, function. Prove that |range(f)| = 0.

2.3.23. Prove that if E is a measurable subset of R, then {(x, y) ∈ R2 :
x − y ∈ E} is a measurable subset of R2.

2.3.24. Let E be a subset of Rd. Set

dE(x) = dist(x,E) = inf{‖x − y‖ : y ∈ E}, for x ∈ Rd,

and for each r > 0 let Er = {x ∈ Rd : dist(x,E) < r}. Prove that the
following statements hold.

(a) dE is continuous on Rd.

(b) Er is open for each r > 0.

(c) If E ⊆ Rd is closed, then dE(x) = 0 if and only if x ∈ E.

(d) Every closed set in Rd is a Gδ-set.
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(e) Every open set in Rd is an Fδ-set.

(f) If E is compact, then |E| = limr→0+ |Er|. However, this can fail if E
is a noncompact closed set, or if E is an open set (even if E is bounded).

2.3.25. Let U = {U ⊆ Rd : U is open} be the collection of all open subsets
of Rd (i.e., U is the topology of Rd). Let B = Σ(U) be the σ-algebra generated
by U (see Problem 2.2.51). Prove the following statements.

(a) B contains every open set, closed set, Gδ-set, Fσ-set, Gδσ-set, Fσδ-set,
and so forth.

(b) B ⊆ L, i.e., every element of B is a Lebesgue measurable set.

(c) If E ⊆ Rd is Lebesgue measurable, then E = B\Z where B ∈ B and
|Z| = 0.

Remark: The elements of B are called the Borel subsets of Rd, and B is
the Borel σ-algebra on Rd. Part (b) shows that every Borel set is Lebesgue
measurable, and part (c) shows that every Lebesgue measurable set differs
from a Borel set by at most a set of measure zero. There do exist Lebesgue
measurable sets that are not Borel sets (see the remark following Problem
5.1.7, or the argument based on cardinality given in [Fol99, Sec. 1.6]).

2.4 Nonmeasurable Sets

We have not yet shown that nonmeasurable sets exist. For simplicity of pre-
sentation we will restrict our discussion to one dimension, but the same tech-
niques can be applied in higher dimensions.

2.4.1 The Axiom of Choice

We will use the Axiom of Choice to prove the existence of a nonmeasurable
set. The Axiom of Choice is one of the axioms of the standard form of set
theory most commonly accepted in mathematics (Zermelo–Fraenkel set the-
ory with the Axiom of Choice, or ZFC). Here is the formal statement of this
axiom.

Axiom 2.4.1 (Axiom of Choice). Let S be a nonempty set, and let P
be the family of all nonempty subsets of S. Then there exists a function
f : P → S such that f(A) ∈ A for each set A ∈ P. ♦

There are many statements that are equivalent to the Axiom of Choice. For
example, Axiom 2.4.1 is equivalent to the statement that every vector space
has a Hamel basis. Here is another equivalent statement (for the meaning of
a Cartesian product of an arbitrary collection of sets, and for a proof of that
Axioms 2.4.1 and 2.4.2 are equivalent, we refer to [Rot02, App. A]).



82 2 Lebesgue Measure

Axiom 2.4.2. The Cartesian product
∏

i∈I Ai of any collection {Ai}i∈I of
nonempty sets is nonempty. ♦

Axiom 2.4.2 implies that if {Ai}i∈I is a collection of disjoint, nonempty
sets, then there exists a set N ⊆ S

Ai such that N ∩ Ai contains exactly
one element for each i ∈ I. In other words, the set N contains precisely one
element of each set Ai.

2.4.2 Existence of a Nonmeasurable Set

We define an equivalence relation ∼ on the real line R by declaring that two
points x and y in R are related if the distance between them is rational. That
is,

x ∼ y ⇐⇒ x − y ∈ Q. (2.27)

The equivalence class of a point x ∈ R is the set of all points that are related
to x. We denote this equivalence class by [x]. For the relation ∼ defined in
equation (2.27), the equivalence class of x is the set of rationals translated
by x:

[x] =
{
y ∈ R : x − y ∈ Q

}
=

{
r + x : r ∈ Q

}
= Q + x.

As for any equivalence relation, any two equivalence classes are either iden-
tical or disjoint (for example, [π] = [π + 2], while [π] and [

√
2] are disjoint).

Therefore the set of distinct equivalence classes partitions the real line R.
Each equivalence class [x] = Q + x is a countable set, so there are uncount-
ably many distinct equivalence classes. The Axiom of Choice implies that
there exists a set N ⊆ R that contains exactly one element of each of the dis-
tinct equivalence classes of ∼ . We will show that this set N is not Lebesgue
measurable. To do this, we will need the following fact about measurable sets
(which may seem surprising at first glance).

Theorem 2.4.3 (Steinhaus Theorem). If E ⊆ R is Lebesgue measurable
and |E| > 0, then the set of differences

E − E =
{
x − y : x, y ∈ E

}

contains an interval centered at 0.

Proof. By Problem 2.2.39, there exists a closed interval I = [a, b] such that
the measure of the set F = E ∩ I satisfies

|F | = |E ∩ I| >
3

4
|I|. (2.28)

If t ≥ 0 then I ∪ (I + t) ⊆ [a, b+ t], while if t ≤ 0 then I ∪ (I + t) ⊆ [a−|t|, b].
In any case, we see that
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|I ∪ (I + t)| ≤ |I| + |t|. (2.29)

If F and F + t are disjoint, then we must have

2 |I| < 2 · 4

3
|F | (by equation (2.28))

=
4

3
|F ∪ (F + t)| (since F and F + t are disjoint)

≤ 4

3
|I ∪ (I + t)| (by monotonicity)

≤ 4

3

(
|I| + |t|

)
(by equation (2.29)).

This equation cannot hold when |t| is small, so F and F + t must intersect
for all small enough |t|. Specifically,

|t| <
1

2
|I| =⇒ F ∩ (F + t) 6= ∅.

Hence F − F contains the interval
(
− |I|

2 , |I|
2

)
, and therefore E − E must

contain this interval as well. ⊓⊔

Problem 4.6.29 gives an appealing alternative proof of Theorem 2.4.3 based
on Lebesgue integration and the operation of convolution.

Theorem 2.4.4. The set N is not Lebesgue measurable.

Proof. Recall that N contains exactly one element of each distinct equiva-
lence class of the relation ∼. The distinct equivalence classes partition the
real line, so their union is R. Therefore

R =
⋃

x∈N

(Q + x) =
⋃

x∈N

⋃
r∈Q

{r + x} =
⋃

r∈Q

(N + r). (2.30)

Since exterior Lebesgue measure is translation-invariant, the exterior measure
of N + r is exactly the same as the exterior measure of N. Combining this
fact with countable subadditivity, we see that

∞ = |R|e =

∣∣∣∣
⋃

r∈Q

(N + r)

∣∣∣∣
e

≤
∑

r∈Q

|N + r|e =
∑

r∈Q

|N |e.

Consequently, we must have |N |e > 0. However, any two distinct points x 6= y
in N belong to distinct equivalence classes of the relation ∼, so x and y must
differ by an irrational amount. Therefore N − N contains no intervals, so
Theorem 2.4.3 implies that N cannot be Lebesgue measurable. ⊓⊔
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2.4.3 Further Results

In the very first paragraphs of this chapter we claimed that there is no nonzero
function that is defined on every subset of R, is nonnegative, and is both
countably additive and translation-invariant. We will prove this claim now. As
a corollary we obtain another proof, similar in spirit to the proof of Theorem
2.4.4 but without needing an appeal to Theorem 2.4.3, that there exist subsets
of R that are not Lebesgue measurable.

Theorem 2.4.5. There does not exist a function µ : P(R) → [0,∞] that sat-
isfies all of the following properties:

(a) µ
(
[0, 1)

)
= 1,

(b) if E1, E2, . . . are disjoint subsets of R, then µ
(

S

Ek

)
=

∑
µ(Ek), and

(c) µ(E + h) = µ(E) for all E ⊆ R and h ∈ R.

Proof. For this proof we use the same equivalence relation that was intro-
duced in equation (2.27), but restricted to elements of [0, 1). That is, given
points x, y ∈ [0, 1), we declare that x ∼ y if and only if x and y differ by a
rational (note that this rational will lie between −1 and 1). The equivalence
class of x ∈ [0, 1) is

[x] =
{
y ∈ [0, 1) : x − y ∈ Q

}
.

By the Axiom of Choice, there exists a set M that contains one element of
each distinct equivalence class of this relation. Let {rk}k∈N be an enumeration
of Q ∩ [−1, 1]. The sets Mk = M + rk are disjoint, and

[0, 1) ⊆
∞⋃

k=1

Mk ⊆ [−1, 2). (2.31)

Suppose that there did exist a function µ : P(R) → [0,∞] that satisfies the
properties (a)–(c) listed in the statement of the theorem. Then, by applying
the countable additivity and translation-invariance properties of µ, we see
that

µ
(
[−1, 2)

)
= µ

(
[−1, 0)

)
+ µ

(
[0, 1)

)
+ µ

(
[1, 2)

)
= 3. (2.32)

Further, if we choose any sets A ⊆ B ⊆ R then, since µ is nonnegative and
countably additive,

µ(B) = µ
(
A ∪ (B\A)

)
= µ(A) + µ(B\A) ≥ µ(A).

Therefore µ is monotonic. Combining this with equations (2.31) and (2.32),
we obtain

1 = µ
(
[0, 1)

)
≤ µ

(
∞⋃

k=1

Mk

)
≤ µ

(
[−1, 2)

)
= 3. (2.33)
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On the other hand, the countable additivity and translation-invariance prop-
erties of µ imply that

µ

(
∞⋃

k=1

Mk

)
=

∞∑

k=1

µ(Mk) =

∞∑

k=1

µ(M).

However, since µ(M) ≥ 0, the only possible values for the sum
∑∞

k=1 µ(M)
are zero (if µ(M) = 0), or infinity (if µ(M) > 0). This contradicts equation
(2.33), so no such function µ can exist. ⊓⊔
Corollary 2.4.6. There exist subsets of R that are not Lebesgue measurable.
In particular, the set M constructed in the proof of Theorem 2.4.5 is a subset
of [0, 1] that is not Lebesgue measurable.

Proof. If every subset of R were Lebesgue measurable, then µ(E) = |E| would
define a nonnegative function on P(R) that satisfies statements (a), (b), and
(c) of Theorem 2.4.5. Since no such function can exist, this is a contradiction.

This does not imply that the specific set M is nonmeasurable. However, if
M were measurable, then the argument used in the proof of Theorem 2.4.5
would imply that 1 ≤ ∑∞

k=1 |M | ≤ 3, which is impossible. ⊓⊔
At the beginning of Section 2.2, we motivated the definition of measurable

sets by saying that it can be shown that exterior Lebesgue measure is not
countably additive. Now we explain why that claim is a consequence of the
existence of nonmeasurable sets.

Example 2.4.7. Since M is not measurable, by definition there must exist
some ε > 0 such that for every open set V ⊇ M we have

|V \M |e > ε.

On the other hand, because M has finite exterior measure, Theorem 2.1.27
implies that there is some open set U ⊇ M such that

|M |e ≤ |U | ≤ |M |e + ε.

The sets M and U \M are disjoint, yet |U \M |e > ε, so

|M ∪ (U \M)|e = |U |e ≤ |M |e + ε < |M |e + |U \M |e. ♦

Problems

2.4.8. (a) Prove that continuity from below holds for exterior Lebesgue mea-
sure. That is, if E1 ⊆ E2 ⊆ · · · is any nested increasing sequence of subsets
of Rd (even nonmeasurable sets), then |SEk|e = limk→∞ |Ek|e.

Remark: This problem will be used in the proof of Lemma 6.2.1.
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(b) Show that there exist sets E1 ⊇ E2 ⊇ · · · in R such that |Ek|e < ∞
for every k and ∣∣∣∣

∞⋂
k=1

Ek

∣∣∣∣
e

< lim
k→∞

|Ek|e.

Hence continuity from above does not hold for exterior Lebesgue measure.

2.4.9. Show that every subset of R that has positive exterior Lebesgue mea-
sure contains a nonmeasurable subset.

2.4.10. Given any integer d > 0, show that there exists a set N ⊆ Rd that is
not Lebesgue measurable.

2.4.11. Assume that E ⊆ Rm, F ⊆ Rn, and A ⊆ Rm+n are all measurable
sets. If we fix x ∈ E and define

Ax =
{
y ∈ F : (x, y) ∈ A

}
,

must it be true that Ax is a measurable subset of Rn?

2.4.12. If X is a finite set, let #X denote the number of elements of X.
Define µ : P(R) → [0,∞] by

µ(E) =

{
#E, if E is finite,

∞, if E is infinite.

Determine which of the properties (a), (b), and (c) stated in Theorem 2.4.5
hold for µ and which fail.

Remark: This function µ is called counting measure on R.

2.4.13. Define δ : P(R) → [0,∞] by

δ(E) =

{
1, if 0 ∈ E,

0, if 0 /∈ E.

Determine which of the properties (a), (b), and (c) stated in Theorem 2.4.5
hold for δ and which fail.

Remark: This function δ is called the δ measure or Dirac measure on R.

2.4.14.* Assume that E is a bounded, measurable subset of R.

(a) Let E − x = {y − x : y ∈ E}, and define

f(x) = |E ∩ (E − x)|, for x ∈ R.

Prove that f is continuous at x = 0.
Remark: This is easy to do using the techniques that we will develop

in Chapter 4, but challenging to prove using only the results that we have
developed so far.

(b) Use part (a) to give another proof of the Steinhaus Theorem.



Chapter 3

Measurable Functions

In this chapter we lay the groundwork for the definition of the Lebesgue
integral of functions on Rd, which will be presented in Chapter 4. We will not
be able to integrate every function. In particular, the functions that we can
integrate must be measurable in a sense that we will introduce in Section 3.1.
After discussing measurability of functions in Sections 3.1–3.3, we consider
some issues related to the convergence of sequences of measurable functions
in Sections 3.4–3.5.

3.1 Definition and Properties of Measurable Functions

We will deal with real-valued, extended real-valued, and complex-valued func-
tions. Since our domain is the real Euclidean space Rd, it may seem odd at
first to consider functions that take complex values. However, such functions
are regularly encountered in practical settings. For example, given a fixed
number ξ ∈ R, the complex exponential function with frequency ξ is the func-
tion eξ : R → C defined by

eξ(x) = e2πiξx, x ∈ R.

These functions play key roles in many areas of mathematics, physics, and
engineering, including harmonic analysis, quantum mechanics, and signal pro-
cessing (for example, see [DM72], [Dau92], [Ben97], [Grö01], [SS03], [Kat04]),
[Heil11]). We will see some of the importance of the complex exponential
functions when we discuss the Fourier transform in Section 9.2.

By definition, a complex-valued function must take values in C; it can-
not take the values ±∞. An extended real-valued function takes values in
R ∪ {±∞} = [−∞,∞]. Every real-valued function is both an extended real-
valued and a complex-valued function. However, an extended real-valued
function need not be complex-valued, and a complex-valued function need

https://doi.org/10.1007/978-3-030-26903-6_3

87© Springer Science+Business Media, LLC, part of Springer Nature 2019
C. Heil, Introduction to Real Analysis, Graduate Texts in Mathematics 280,

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26903-6_3&amp;domain=pdf


88 3 Measurable Functions

not be extended real-valued. Consequently, we end up needing to define mea-
surability for two types of functions: Extended real-valued functions and
complex-valued functions (each of which include the real-valued functions
as a special case). We will consider extended real-valued functions first, and
then consider complex-valued functions. Once we have finished defining mea-
surability for both cases, it will be convenient to have a means of addressing
both possibilities simultaneously, so that we do not have to state every re-
sult separately for extended real-valued and complex-valued functions. We
introduced some terminology for this purpose in the Preliminaries; for ease
of reference we restate that notation here.

Notation 3.1.1 (Scalars and the Symbol F). We let the symbol F denote
a choice of either the extended real line [−∞,∞] or the complex plane C.
Associated with this choice, we make the following declarations.

• If F = [−∞,∞], then the word scalar means a real number c ∈ R.

• If F = C, then the word scalar means a complex number c ∈ C.

In particular, ±∞ are not scalars. ♦

Thus, when we write “f : E → F,” we mean that f is a function on the
domain E and f is either extended real-valued or complex-valued.

Remark 3.1.2. Most of the extended real-valued functions that we encounter
only take the values ±∞ on a set of measure zero. Such a function is said
to be finite almost everywhere. Interpreting “finite” as meaning “not ±∞,”
a complex-valued function is finite at every point, and therefore is automat-
ically finite a.e. Combining these two possibilities, we see that the phrase

• f : E → F is finite a.e.

is equivalent to the phrase

• f is a function on E that is either complex-valued or is extended real-valued
but finite at almost every point.

The first phrase is more concise, but sometimes for emphasis we will write
out the second phrase in full. ♦

3.1.1 Extended Real-Valued Functions

According to the next definition, an extended real-valued function f is mea-
surable if the inverse image of each extended interval (a,∞] is a measurable
set. To simplify the notation, it will be convenient to use some of the abbre-
viations that were laid out in the Preliminaries. These include shorthands
such as

{f > a} =
{
x ∈ E : f(x) > a

}
= f−1(a,∞],
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and
{f ≤ g} =

{
x ∈ E : f(x) ≤ g(x)

}
.

Definition 3.1.3 (Extended Real-Valued Measurable Functions). Let
E ⊆ Rd and f : E → [−∞,∞] be given. We say that f is a Lebesgue measur-
able function on E, or simply a measurable function for short, if

{f > a} = f−1(a,∞]

is a measurable subset of Rd for each number a ∈ R. ♦

Example 3.1.4. Let E be a subset of Rd, and consider the characteristic func-
tion χE . If a is a real number, then

{
χE > a

}
=





∅, if a ≥ 1,

E, if 0 ≤ a < 1,

Rd, if a < 0.

Hence χE is a Lebesgue measurable function on Rd if and only if E is a
Lebesgue measurable subset of Rd. ♦

We do not explicitly require the domain E in the definition of a measur-
able function to be measurable, but in most circumstances this will be the
case. In general, measurability of f “almost” implies measurability of the do-
main E. This statement is made precise in Problem 3.1.16, which shows that
if f : E → [−∞,∞] is a measurable function and {f = −∞} is a measurable
set, then E is measurable.

Sometimes it is useful to replace the intervals (a,∞] that appear in Defini-
tion 3.1.3 with other sets. The next lemma shows that the definition of mea-
surability is unchanged if we replace the intervals (a,∞] by [a,∞], [−∞, a),
or [−∞, a]. The proof follows from the fact that any one of these types of
intervals is a complement, countable union, or countable intersection of the
other types of intervals.

Lemma 3.1.5. Let E be a subset of Rd. If f : E → [−∞,∞], then the fol-
lowing four statements are equivalent.

(a) f is a measurable function, i.e., {f > a} is measurable for each a ∈ R.

(b) {f ≥ a} is measurable for each a ∈ R.

(c) {f < a} is measurable for each a ∈ R.

(d) {f ≤ a} is measurable for each a ∈ R.

Proof. We will only prove two of the implications, as the others are similar.

(a) ⇒ (b). Assume that {f > a} is measurable for each a ∈ R. Writing

{f ≥ a} =
∞⋂

k=1

{f > a − 1
k},
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we see that {f ≥ a} is a countable intersection of measurable sets and hence
is measurable.

(b) ⇒ (c). If {f ≥ a} is measurable then so is its complement, which is
{f < a}. ⊓⊔

We stated Definition 3.1.3 without motivation. To explain why it is rea-
sonable, consider the inverse image f−1(U) of an open set U ⊆ R. We can
write U as a union of at most countably many (not necessarily disjoint)
bounded open intervals (ak, bk), so the inverse image of U under f is

f−1(U) =
⋃
k

f−1(ak, bk) =
⋃
k

{ak < f < bk} =
⋃
k

(
{ak < f} ∩ {f < bk}

)
.

If f is a measurable function, then {f > ak} and {f < bk} are both measur-
able sets, so f−1(U) is measurable as well. Hence, if f is measurable then

the inverse image of every open set is measurable.

Contrast this with the fact that a function is continuous if and only if the
inverse image of every open set is open. In this sense measurability is a
generalization of continuity. In particular, we have the following fact.

Lemma 3.1.6. Every continuous real-valued function f : Rd → R is Lebesgue
measurable.

Proof. Since f is finite at each point, the inverse image of (a,∞] equals the
inverse image of (a,∞):

{f > a} = f−1(a,∞] = f−1(a,∞).

But f is continuous and (a,∞) is an open set, so {f > a} is an open set in Rd.
Open sets are measurable, so we conclude that f is a measurable function. ⊓⊔

In many circumstances, sets that have measure zero “don’t matter.” The
next lemma shows that this philosophy holds for measurability of functions,
in the sense that changing the values of a function on a set of measure zero
does not affect the measurability of the function.

Lemma 3.1.7. Let E ⊆ Rd be a measurable set, and let f : E → [−∞,∞]
be a measurable function. If g : E → [−∞,∞] satisfies g = f a.e., then g is
measurable.

Proof. Assume that f is measurable and g = f a.e. Then Z = {f 6= g} has
measure zero, so it is measurable. Given a ∈ R, let Za = {x ∈ Z : g(x) > a}.
Then

{g > a} =
(
{f > a} \ Z

)
∪ Za.

Since {f > a} is measurable and Z and Za both have measure zero, we
conclude that {g > a} is measurable. ⊓⊔
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Combining Lemma 3.1.7 with the fact that continuous functions are mea-
surable gives us the following result.

Corollary 3.1.8. If f : Rd → [−∞,∞] and there exists a continuous function
g : Rd → R that equals f almost everywhere, then f is measurable. ♦

It is important to note that equaling a continuous function almost every-
where is not the same as being continuous almost everywhere. The Heaviside
function H = χ

[0,∞) is continuous at all but one point, and therefore is con-
tinuous a.e., but there is no continuous function g such that H = g a.e. In
contrast, the characteristic function of the rationals, χ

Q, is not continuous
at any point, yet χ

Q = 0 a.e., and the zero function is continuous at every
point. While Corollary 3.1.8 shows that a function that equals a continuous
function a.e. is measurable, we have not yet developed enough machinery to
prove that a function that is continuous a.e. is measurable (we will do this in
Exercise 3.2.9).

Remark 3.1.9. In addition to changing a function on a set of measure zero,
it is sometimes convenient to allow f to actually be undefined on a set of
measure zero. If Z is a subset of E that has measure zero, then a function
f whose domain is E\Z is said to be defined almost everywhere on E. We
say that such a function is measurable if it is measurable when we assign
values to f(x) for x ∈ Z. Since Z has measure zero, the measurability of f is
unaffected by the choice of values that we assign to f on Z. ♦

Whenever we deal with an extended real-valued function f, the following
related functions often appear.

Definition 3.1.10 (Positive and Negative Parts). Given an extended
real-valued function f : X → [−∞,∞], the positive part of f is

f+(x) = max{f(x), 0},

and the negative part of f is

f−(x) = max{−f(x), 0}. ♦

By construction, f+ and f− are nonnegative extended real-valued func-
tions, and we have the relations

f = f+ − f− and |f | = f+ + f−.

We will show in Lemma 3.2.5 that f+ and f− are measurable whenever f is
measurable.
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3.1.2 Complex-Valued Functions

Every complex-valued function f can be written in the form f = fr + ifi

where fr and fi are real-valued. We declare that a complex-valued function f
is measurable if and only if its real part fr and its imaginary part fi are each
measurable in the sense of Definition 3.1.3.

Definition 3.1.11 (Complex-Valued Measurable Functions). Let E be
a subset of Rd. Given a function f : E → C, write f in real and imaginary
parts as f = fr + ifi. Then we say that f is Lebesgue measurable on E, or
simply measurable for short, if both fr and fi are measurable real-valued
functions. ♦

A function f : Rd → C is continuous if and only if fr and fi are both
continuous, so we have the following complex analogue of Lemma 3.1.6.

Lemma 3.1.12. Every continuous function f : Rd → C is measurable. ♦

The complex-valued analogue of Lemma 3.1.7 takes the following form and
is proved in exactly the same manner.

Lemma 3.1.13. Let E ⊆ Rd be a Lebesgue measurable set. If f : E → C is
measurable and g = f a.e., then g is measurable. ♦

Problems

3.1.14. Show that if E ⊆ R is measurable and f : E → R is monotone
increasing on E, then f is measurable.

3.1.15. Given E ⊆ Rd, prove that f : E → [−∞,∞] is measurable if and
only if {f > r} is measurable for every rational number r.

3.1.16. Let E be a subset of Rd. Prove that if f : E → [−∞,∞] is a measur-
able function and {f = −∞} is a measurable set, then E is measurable.

3.1.17. (a) Prove that if f is a measurable function, then {f = a} is a
measurable set for every a ∈ R.

(b) Exhibit a nonmeasurable function f : R → R such that {f = a} is
measurable for every a ∈ R.

3.1.18. (a) Prove that f : Rd → R is a measurable function if and only if
f−1(U) is a measurable set for every open set U ⊆ R.

(b) Prove that f : Rd → C is a measurable function if and only if f−1(U)
is a measurable set for every open set U ⊆ C.
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3.1.19. Let E ⊆ Rd be a measurable set with |E| > 0, and assume that
f : E → F is measurable.

(a) Show that if f is finite a.e., then there exists a measurable set A ⊆ E
such that |A| > 0 and f is bounded on A.

(b) Suppose that it is not the case that f = 0 a.e. (that is, f is nonzero on
a set of positive measure). Prove that there exists a measurable set A ⊆ E
and a number δ > 0 such that |A| > 0 and |f | ≥ δ on A.

3.2 Operations on Functions

Now we investigate whether measurability is preserved under operations such
as addition, multiplication, limits, and compositions. We will see that mea-
surability is preserved in many cases, but there are situations where we need
to be careful.

3.2.1 Sums and Products

We begin with addition of functions. This is an operation where there is a
potential difficulty, because if we attempt to add two extended real-valued
functions f and g then there may be points x where f(x) + g(x) takes the
indeterminate form ∞−∞ or −∞+∞. The function f + g is not defined at
any such point. The following lemma shows that if f(x) + g(x) never takes
an indeterminate form, then f + g will be measurable (assuming f and g are
themselves measurable).

Lemma 3.2.1. Let E ⊆ Rd be a Lebesgue measurable set, and assume that
f, g : E → [−∞,∞] are measurable functions such that f(x) + g(x) never
takes the form ∞−∞ or −∞ + ∞. Then the following statements hold.

(a) {f < g} is a measurable set.

(b) g + b and −g + b are measurable for each number b ∈ R.

(c) f + g is measurable.

Proof. (a) Since {f < r} and {r < g} are measurable and since a countable
union of measurable sets is measurable, it follows that

{f < g} =
⋃

r∈Q

{f < r < g} =
⋃

r∈Q

(
{f < r} ∩ {r < g}

)

is measurable.
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(b) If we fix b ∈ R, then for every a ∈ R we have

{g + b > a} = {g > a − b}.

This is measurable for every a, so g+b is a measurable function. The function
−g is measurable since {−g > a} = {g < −a} is measurable for every a.
Consequently, −g + b is measurable as well.

(c) Fix a number a ∈ R. Part (b) implies that a − g is measurable, so it
follows from part (a) that

{f + g > a} = {f > a − g}

is measurable. This is true for every a, so f + g is measurable. ⊓⊔

Even if a function does take extended real values, in practice the set of
points where f(x) is ±∞ is typically a set of measure zero (such a function
is said to be finite almost everywhere; see Remark 3.1.2). If f and g are both
finite a.e., then f(x)+g(x) will only be undefined on a set Z of measure zero.
By Lemma 3.1.7, we can assign to f(x) + g(x) any values we like for x ∈ Z
without affecting the measurability of f + g, or we can simply view f + g as
being undefined on Z. The following lemma proves that f + g is measurable
in this case (also compare Problem 3.2.16).

Lemma 3.2.2. Let E ⊆ Rd be a Lebesgue measurable set and assume that
f, g : E → [−∞,∞] are measurable functions that are finite a.e. Then f + g
and f − g are measurable functions.

Proof. Let Z be the set of measure zero where f + g is not defined. Let
f1(x) = f(x) for x /∈ Z and set f1(x) = 0 for x ∈ Z, and define g1 similarly.
Then f1 = f a.e. and g1 = g a.e., so both f1 and g1 are measurable by
Lemma 3.1.7. Further, Lemma 3.2.1 implies that f1 +g1 is measurable. Since
f + g = f1 + g1 a.e., it follows that f + g is measurable no matter how we
define f(x)+g(x) for x ∈ Z. Finally, since −g is also measurable, we see that
f − g = f + (−g) is measurable as well. ⊓⊔

Because of our convention that 0 ·∞ = 0, the product of any two extended
real-valued functions is defined at all points in their domain. The following
lemma shows that the product of any two measurable functions that are finite
a.e. is measurable (also compare Problem 3.2.17).

Lemma 3.2.3. Let E ⊆ Rd be a measurable set. If f, g : E → [−∞,∞] are
measurable and finite a.e., then fg is measurable as well.

Proof. If a ≥ 0 then

{
f2 > a

}
=

{
f > a1/2

}
∪

{
f < −a1/2

}

is measurable, so f2 is a measurable function.
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By Lemma 3.2.2, both f + g and f − g are measurable, so the preceding
reasoning implies that (f + g)2 and (f − g)2 are measurable. Since these
functions are finite a.e., we can apply Lemma 3.2.2 again and conclude that

fg =
(f + g)2 − (f − g)2

4

is measurable. ⊓⊔

Next we observe that measurability is preserved under quotients as long
as we avoid division by zero and the indeterminate forms ±∞/∞.

Lemma 3.2.4. Let E ⊆ Rd be a measurable set. If f, g : E → [−∞,∞] are
measurable, f is finite a.e., and g 6= 0 a.e., then f/g is measurable.

Proof. Suppose first that g is nonzero at every point. In this case, if a > 0
then

{
1/g > a

}
=

{
0 < g < 1/a

}
, which is measurable. Likewise, {1/g > a}

is measurable if a = 0 or a < 0, so we conclude that 1/g is measurable.
Now assume that g is nonzero almost everywhere. Define h(x) = g(x)

when g(x) 6= 0, and h(x) = 1 otherwise. Then h = g a.e., so h is measurable
and everywhere nonzero. Hence 1/h is measurable by our prior reasoning,
and therefore 1/g is measurable since it equals 1/h a.e.

Since we have shown that 1/g is measurable, Lemma 3.2.3 implies that
the product f · (1/g) is measurable. But f is finite a.e. so f · (1/g) = f/g a.e.,
and therefore f/g is measurable. ⊓⊔

3.2.2 Compositions

Now we consider compositions. We will show that if we compose a measurable
function with a continuous function in the correct order, then the result will
be measurable. As a consequence, the positive and negative parts f+ and f−

of an extended real-valued function f are measurable, as is |f | and positive
powers of |f |.

Lemma 3.2.5. Let E ⊆ Rd be a measurable set, and let f : E → [−∞,∞] be
a measurable function that is finite a.e.

(a) If ϕ : R → R is continuous, then ϕ ◦ f is measurable.

(b) |f |, f2, f+, f−, and |f |p for p > 0 are all measurable functions.

Proof. (a) Case 1. Assume first that f is finite at all points, and fix a ∈ R.
Since ϕ is continuous and (a,∞) is an open set, the inverse image ϕ−1(a,∞)
is an open subset of R. Since f is measurable and the inverse image of an
open set under a measurable function is measurable (see Problem 3.1.18), we
conclude that
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{ϕ ◦ f > a} = (ϕ ◦ f)−1(a,∞) = f−1(ϕ−1(a,∞))

is a measurable subset of Rd. Hence ϕ ◦ f is measurable.

Case 2. Now suppose that f is finite at almost every point. Then we can
create a function g that is finite at all points and equals f almost everywhere
(for example, set g(x) = 0 at any point where f(x) = ±∞). Since f is
measurable and g = f a.e., the function g is measurable. Since g is also
finite everywhere, Case 1 implies that ϕ ◦ g is measurable. Therefore ϕ ◦ f is
measurable since it equals ϕ ◦ g almost everywhere.

(b) If p > 0, then ϕ(x) = |x|p is continuous on R. It therefore follows
from part (a) that |f |p = ϕ ◦ f is measurable. Similarly, ψ(x) = max{x, 0} is
continuous, so f+ = ψ ◦ f is measurable. ⊓⊔

Although the composition ϕ ◦ f of a continuous function ϕ with a mea-
surable function f must be measurable, it is not true that the composition
f ◦ϕ need be measurable, even if ϕ is continuous (a counterexample is given
in Problem 5.1.7). Consequently, it is possible for the composition of two
measurable functions to be nonmeasurable. On the other hand, the following
lemma states that f ◦ L is measurable if f is measurable and L : Rd → Rd is
a linear bijection.

Lemma 3.2.6. Let E be a measurable subset of Rd. If f : E → [−∞,∞] is a
measurable function and L : Rd → Rd is an invertible linear transformation,
then f ◦ L : L−1(E) → [−∞,∞] is measurable.

Proof. Since L−1 is a linear mapping of Rd into itself, Corollary 2.3.14 tells
us that L−1 maps measurable sets to measurable sets. Therefore the domain
L−1(E) of the composition f ◦L is a measurable set. If we choose any a ∈ R,
then

{f ◦ L > a} = (f ◦ L)−1(a,∞] = L−1
(
f−1(a,∞]

)
= L−1

(
{f > a}

)
.

Since f is measurable and L−1 maps measurable sets to measurable sets, we
conclude that {f ◦ L > a} is measurable. ⊓⊔

3.2.3 Suprema and Limits

Next we turn to suprema, infima, limsups, liminfs, and limits.

Lemma 3.2.7. Assume E ⊆ Rd is measurable. If fn : E → [−∞,∞] is mea-
surable and finite a.e. for each n ∈ N, then the following statements hold.

(a) Each of

sup
n∈N

fn, inf
n∈N

fn, lim sup
n→∞

fn, lim inf
n→∞

fn,
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is a measurable function on E.

(b) If f(x) = limn→∞ fn(x) exists for a.e. x ∈ E, then f is measurable.

(c) If f(x) =
∑∞

n=1 fn(x) exists for a.e. x ∈ E, then f is measurable.

Proof. (a) Let f(x) = sup fn(x). Then

{f > a} =
∞⋃

n=1
{fn > a},

which is a measurable set. Therefore f is measurable. Since −fn is measur-
able, it follows that

inf
n∈N

fn = − sup
n∈N

(−fn)

is also measurable. Finally,

lim sup
n→∞

fn(x) = inf
m∈N

(
sup
n≥m

fn(x)

)
,

so lim sup fn is measurable, and likewise lim inf fn is measurable.

(b) We know from part (a) that lim sup fn is measurable. Consequently,
if f(x) = lim fn(x) exists for a.e. x then f is equal almost everywhere to the
measurable function lim sup fn, so f is measurable.

(c) By Lemma 3.2.2, the partial sums sN (x) =
∑N

n=1 fn(x) are measurable
for each N ∈ N. If these partial sums converge at almost every point, then
part (b) implies that

f(x) =
∞∑

n=1

fn(x) = lim
N→∞

sN (x)

is measurable. ⊓⊔

We use the following notation to describe the type of situation that appears
in part (b) of Lemma 3.2.7.

Notation 3.2.8. We say that functions fn converge pointwise a.e. to f if

f(x) = lim
n→∞

fn(x) for a.e. x.

In this case we write fn → f pointwise a.e., or simply fn → f a.e. ♦

Using this notation, Lemma 3.2.7(b) says that the pointwise a.e. limit of
measurable functions is measurable.

As an application, we give an exercise that shows that any function that
is continuous a.e. is measurable.

Exercise 3.2.9. Fix any function f : R → R.
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(a) For each n ∈ N set

φn =
∑

k∈Z

f
(

k
n

)
χ[

k
n ,

k+1
n

).

Prove that φn is measurable (even if f is not), and show that if f is
continuous at a particular point x then φn(x) → f(x) as n → ∞.

(b) Show that if f is continuous at almost every point x ∈ R, then f is
Lebesgue measurable.

(c) By replacing intervals with boxes, extend part (a) to functions on Rd, and
prove that any function f : Rd → R that is continuous a.e. is Lebesgue
measurable. ♦

Now we turn to complex-valued functions. In some ways, these are easier
to deal with than extended real-valued functions because f(x) must be a
complex scalar for every x (hence every complex-valued function f : E → C

is finite at every point, and therefore is finite a.e.). On the other hand, we
usually cannot take the sup, inf, limsup, or liminf of a sequence of complex-
valued functions (although we can apply those operations to the real and
imaginary parts separately). The proofs for the complex case mostly follow
by breaking a function into its real and imaginary parts.

Exercise 3.2.10. Let E ⊆ Rd be a measurable set, and let f, g, fn : E → C

be complex-valued measurable functions. Prove the following statements.

(a) f + g is measurable.

(b) fg is measurable.

(c) If g(x) 6= 0 a.e., then f/g is measurable.

(d) If h(x) = limn→∞ fn(x) exists for a.e. x ∈ E, then h is measurable.

(e) If s(x) =
∑∞

n=1 fn(x) exists for a.e. x ∈ E, then s is measurable.

(f) If ϕ : C → C is continuous, then ϕ ◦ f is measurable.

(g) |f |p is measurable for each p > 0.

(h) If L : Rd → Rd is an invertible linear transformation, then the composition
f ◦ L : L−1(E) → C is measurable. ♦

3.2.4 Simple Functions

In order to define the Lebesgue integral in Chapter 4, we will need to have
a class of functions for which it is clear what the integral should be. For this
purpose, the “simplest” functions to deal with are those that take only finitely
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many distinct scalar values. For example, the characteristic function χA of a
measurable set A takes only the values 0 and 1, so it is “simple” in this sense.
We consider some of the basic properties of these simple functions now.

Definition 3.2.11 (Simple Function). Let E ⊆ Rd be a Lebesgue mea-
surable set. A simple function on E is a measurable function φ : E → C that
takes only finitely many distinct values. ♦

A simple function can be real-valued, but it cannot take the values ±∞. In
order for φ to be called a simple function, φ must be measurable, φ(x) must
be a real or complex scalar for each x ∈ E, and the set of all values taken
by φ must be a finite set. The set of all values of φ is just another name for
the range of φ, so a simple function is precisely a measurable function whose
range is a finite subset of C. A simple function is nonnegative if its range is
a finite subset of [0,∞).

Every characteristic function of a measurable set is a simple function. Fur-
thermore, any finite linear combination of measurable characteristic functions
is measurable and takes only finitely many scalar values, so is also simple.
Hence if E1, . . . , EN are measurable subsets of E and c1, . . . , cN are complex

scalars, then φ =
∑N

k=1 ck χEk
is a simple function. The next lemma (whose

proof essentially follows “from inspection”) states that every simple function
has this form.

Lemma 3.2.12. Let φ be a simple function whose domain is a measurable
set E ⊆ Rd. If c1, . . . , cN are the distinct values taken by φ and we define

Ek = φ−1{ck} =
{
φ = ck

}
, for k = 1, . . . , N, (3.1)

then

φ =

N∑

k=1

ck χEk
.

Moreover, the sets E1, . . . , EN given in equation (3.1) partition E into dis-
joint measurable sets. ♦

There may be many ways to write a given simple function as a linear
combination of characteristic functions, but the form given in Lemma 3.2.12
is particularly useful, so we give it the following special name.

Definition 3.2.13 (Standard Representation). The standard represen-
tation of a simple function φ is the representation given by Lemma 3.2.12,
i.e., φ =

∑N
k=1 ck χEk

where c1, . . . , cN are the distinct values taken by φ and

Ek = {φ = ck} for k = 1, . . . , N. ♦

For example, φ = χ
[0,2] + χ

[1,3] is a simple function on R because it takes
only three distinct values. Its standard representation is

φ = 0χE1
+ 1χE2

+ 2χE3
,
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where E1 = (−∞, 0) ∪ (3,∞), E2 = [0, 1) ∪ (2, 3], and E3 = [1, 2]. Of course,
we can also write φ in the form

φ = 1χE2
+ 2χE3

,

but while the sets E2, E3 are disjoint, they do not partition the domain R.
In general, one of the scalars ck in the standard representation of a simple
function φ might be zero.

If φ =
∑M

j=1 cj χEj
and ψ =

∑N
k=1 dk χFk

are the standard representa-

tions of simple functions φ and ψ, then φ + ψ is a linear combination of the
characteristic functions of the sets Ej ∩ Fk, because

φ + ψ =

M∑

j=1

N∑

k=1

(cj + dk)χEj∩Fk
. (3.2)

This need not be the standard representation of φ + ψ, since the scalars
cj + dk may coincide for different values of j and k. However, equation (3.2)
does show that the sum of two simple functions is simple, and a similar
computation shows that the product of two simple functions is simple.

Much of the utility of simple functions comes from our next theorem, which
states that every nonnegative measurable function (including those that take
the value ∞) can be written as the pointwise limit of a sequence of simple
functions φn. In fact, we will be able to construct simple functions φn that
increase monotonically to f at each point, and the convergence is uniform on
any subset where f is bounded.

Theorem 3.2.14. Let E ⊆ Rd be a measurable set, and let f : E → [0,∞]
be a nonnegative, measurable function on E.

(a) There exist nonnegative simple functions φn such that φn ր f. That is,
0 ≤ φ1 ≤ φ2 ≤ · · · , and limn→∞ φn(x) = f(x) for each x ∈ E.

(b) If f is bounded on some set A ⊆ E, then we can construct the functions
φn in statement (a) so that they converge uniformly to f on A, i.e.,

lim
n→∞

‖(f − φn) · χA‖u = lim
n→∞

(
sup
x∈A

|f(x) − φn(x)|
)

= 0.

Proof. The idea is that we construct φn by simply rounding f down to
the nearest integer multiple of 2−n. However, if f is unbounded then this
would give φn infinitely many values, yet a simple function can only take
finitely many values. Therefore we stop the rounding-down process at the
finite height n, which means that we define φn by

φn(x) =





j − 1

2n
, if

j − 1

2n
≤ f(x) <

j

2n
, j = 1, . . . , n2n,

n, if f(x) ≥ n.

(3.3)
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Fig. 3.1 Illustration of a function f and the approximating simple functions φ1 and φ2

constructed in the proof of Theorem 3.2.14 (the region under the graphs of φ1 and φ2 is

shaded).

Illustrations for n = 1 and n = 2 appear in Figure 3.1.
By construction, φn is measurable, φn(x) ≤ φn+1(x) for every x, and

f(x) ≤ n =⇒ |f(x) − φn(x)| ≤ 2−n. (3.4)

If f(x) = ∞ then φn(x) = n for every n, so φn(x) → f(x) in this case. If
f(x) is finite, then n will eventually exceed f(x), so equation (3.4) implies
that φn(x) → f(x). In fact, if f(x) ≤ M < ∞ for all x in some set A, then for
each n ≥ M we simultaneously have |f(x) − φn(x)| ≤ 2−n for every x ∈ A.
This implies that φn converges uniformly to f on A. ⊓⊔

Theorem 3.2.14 shows us how to write a nonnegative measurable function
as a pointwise limit of simple functions. We will use this to prove that an
arbitrary measurable function is a pointwise limit of simple functions. To
do this, we follow a standard approach that we will see many times in the
coming pages: We write an arbitrary function as a linear combination of
nonnegative functions. Specifically, if a measurable function f takes extended
real values then we write f as a difference of two nonnegative functions, and
if f takes complex values then we write f as a linear combination of its
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real and imaginary parts, each of which is real-valued and can therefore be
written as a difference of nonnegative functions. By applying Theorem 3.2.14
to the nonnegative functions that result from this splitting and then putting
the pieces together, we create a sequence of simple functions that converge
pointwise to f (although the convergence need not be monotone, as it is for
nonnegative functions).

Corollary 3.2.15. Let E ⊆ Rd be a measurable set. If f : E → F is a mea-
surable function on E, then there exist simple functions φn on E such that:

(a) limn→∞ φn(x) = f(x) for each x ∈ E,

(b) |φn(x)| ≤ |f(x)| for every n ∈ N and x ∈ E, and

(c) the convergence is uniform on every set on which f is bounded.

Proof. Suppose first that f is extended real-valued, and let f+ and f− be
the positive and negative parts of f introduced in Definition 3.1.10. Since
f+ and f− are nonnegative, there exist simple functions φ+

n and φ−
n , such

that 0 ≤ φ+
n ր f+ and 0 ≤ φ−

n ր f−, and the convergence is uniform on
any set on which f+ and f− are bounded. The result then follows by setting
φn = φ+

n − φ−
n .

Exercise: Extend the proof to complex-valued functions by writing f =
fr + ifi. ⊓⊔

Problems

3.2.16. Let E ⊆ Rd be measurable, and assume that f, g : E → [−∞,∞] are
measurable (but not necessarily finite a.e.). Given c ∈ [−∞,∞], define

h(x) =

{
c, if f(x) + g(x) is an indeterminate form,

f(x) + g(x), otherwise.

Prove that h is measurable.

3.2.17. Assume that E ⊆ Rd is measurable, and f, g : E → [−∞,∞] are any
two measurable functions on E. Prove that fg is measurable.

3.2.18. Let {fn}n∈N be a sequence of measurable functions, either extended
real-valued or complex-valued, whose domain is a measurable set E ⊆ Rd.
Show that

L =
{

x ∈ E : lim
n→∞

fn(x) exists
}

and S =
{

x ∈ E :
∞∑

n=1

|fn(x)| < ∞
}

are measurable subsets of E.
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3.2.19. Let E ⊆ R be a measurable set that is contained in an interval I,
and assume that f : I → C is a measurable function that is differentiable at
each point in E, i.e.,

f ′(x) = lim
h→0

f(x + h) − f(x)

h
exists and is a scalar for all x ∈ E.

Show that f ′ is a measurable function on E.
Remark: This problem will be used in the proof of Lemma 6.2.4.

3.2.20. Suppose that f : Rd → R is measurable, and ϕ : Rd → Rd is a bijec-
tion such that ϕ−1 is Lipschitz. Prove that f ◦ ϕ is measurable.

3.2.21. Assume that E is a measurable subset of Rd such that |E| < ∞.

(a) Suppose that f : E → R is measurable. Prove that for each ε > 0, there
is a closed set F ⊆ E such that |E\F | < ε and f is bounded on F.

(b) Let fn be a measurable function on E for each n ∈ N. Suppose that
for all x ∈ E we have

Mx = sup
n∈N

|fn(x)| < ∞.

Prove that for each ε > 0, there exists a closed set F ⊆ E and a finite
constant M such that |E\F | < ε and |fn(x)| ≤ M for all x ∈ F and n ∈ N.

3.2.22. This problem is a continuation of Problem 2.3.25. Assume that
f : Rd → R is a measurable function, and define

Σ =
{
B ⊆ R : B is measurable and f−1(B) is measurable

}
.

Prove the following statements.

(a) Σ is a σ-algebra of subsets of Rd.

(b) B ⊆ Σ, where B is the Borel σ-algebra.

(c) If B is a Borel set (i.e., B ∈ B), then f−1(B) is a measurable set.

3.3 The Lebesgue Space L∞(E)

We will study several different spaces of measurable functions as we progress
further through the text. The first of these is L∞(E), which consists of all
measurable, essentially bounded functions on E. By Definition 2.2.26, essen-
tially bounded means that esssupx∈E |f(x)| is finite. For convenience, given
a measurable function f on E, we define

‖f‖∞ = esssup
x∈E

|f(x)|.
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We call ‖f‖∞ the L∞-norm of f (although, as we will see, it is technically
not a norm but rather is a seminorm).

Remark 3.3.1. For comparison, recall that the uniform norm of a function f
on E is

‖f‖u = sup
x∈E

|f(x)|.

By Exercise 2.2.30, if f is a continuous function whose domain is an open set
U ⊆ Rd, then ‖f‖∞ = ‖f‖u. However, in general we only have the inequality
‖f‖∞ ≤ ‖f‖u. ♦

An essentially bounded function need not be bounded, but we do have the
following, as an immediate consequence of Lemma 2.2.28.

Lemma 3.3.2. Let E be a measurable subset of Rd. If f ∈ L∞(E), then

|f(x)| ≤ ‖f‖∞ for a.e. x ∈ E. ♦

Every extended real-valued or complex-valued measurable function f on
a measurable set E ⊆ Rd has a well-defined L∞-norm, although ‖f‖∞ could
be infinite. A function is essentially bounded if and only if ‖f‖∞ < ∞.
By Lemma 3.3.2, every essentially bounded function is finite a.e. (but not
conversely—consider f(x) = 1/x).

We collect the essentially bounded functions to form the space L∞(E).
Technically, there are two versions of L∞(E), one consisting of complex-
valued functions and one consisting of extended real-valued functions (which
must be finite a.e., since they are essentially bounded). Both cases are im-
portant in applications, and in any particular circumstance it is usually clear
from context whether our functions are extended real-valued or complex-
valued. Following Notation 3.1.1, we combine these two possibilities into a
single definition by letting the symbol F denote a choice of either [−∞,∞]
or C. In conjunction with this (and as specified in Notation 3.1.1), the word
scalar means a (finite) real number when F = [−∞,∞], and it means a
complex number when F = C. Using these conventions, here is the precise
definition of L∞(E).

Definition 3.3.3 (The Lebesgue Space L∞(E)). If E is a measurable
subset of Rd, then the Lebesgue space of essentially bounded functions on E
is the set of all essentially bounded measurable functions f : E → F. That is,

L∞(E) =

{
f :E → F : f is measurable and ‖f‖∞ < ∞

}
. ♦

The following exercise gives some properties of L∞(E) and the L∞-norm.

Exercise 3.3.4. Assume that E ⊆ Rd is measurable. Show that if f and g
are any two functions in L∞(E), then af +bg ∈ L∞(E) for all scalars a and b.
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Conclude that L∞(E) is a vector space. Also prove that the following four
statements hold for all functions f, g ∈ L∞(E) and all scalars c.

(a) Nonnegativity: 0 ≤ ‖f‖∞ < ∞.

(b) Homogeneity: ‖cf‖∞ = |c| ‖f‖∞.

(c) The Triangle Inequality: ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.

(d) Almost Everywhere Uniqueness: ‖f‖∞ = 0 if and only if f = 0 a.e. ♦
Exercise 3.3.4 tells us that the “L∞-norm” ‖ · ‖∞ is almost a norm on

L∞(E). Specifically, parts (a)–(c) of Exercise 3.3.4 say that ‖ · ‖∞ is a semi-
norm in the sense of Definition 1.2.3. In order to be called a norm, it would
have to be the case that ‖f‖∞ = 0 if and only if f is the zero function (the
function that is identically zero). However, part (d) of Exercise 3.3.4 implies
that there exist nonzero functions that satisfy ‖f‖∞ = 0; in fact, this is true
for any function f that is zero almost everywhere. For example, taking E = R

we have ‖χQ‖∞ = 0 even though χ
Q is not identically zero. Still, although

the uniqueness requirement of a norm is not strictly satisfied, the “L∞-norm”
does satisfy “almost everywhere uniqueness” in the sense that ‖f‖∞ = 0 if
and only if f = 0 a.e.

3.3.1 Convergence and Completeness in L∞(E)

A norm (or a seminorm) provides us with a way to measure the distance
between vectors. Measured with respect to the L∞-norm, the distance be-
tween two functions f and g is ‖f − g‖∞, which is the essential supremum of
|f(x)−g(x)|. As spelled out in Definition 1.1.2, once we have a distance func-
tion we can define a corresponding notion of convergence. For convenience we
state this formally for the L∞-norm. We will see many other norms and other
types of convergence criteria later in the volume (and Chapter 1 contains a
review of convergence in generic metric and normed spaces).

Definition 3.3.5 (Convergence in L∞-Norm). Let E be a measurable
subset of Rd. A sequence of essentially bounded functions {fn}n∈N on E (ei-
ther extended real-valued or complex-valued) is said to converge to a function
f in L∞-norm if

lim
n→∞

‖f − fn‖∞ = lim
n→∞

(
esssup

x∈E
|f(x) − fn(x)|

)
= 0.

In this case we write fn → f in L∞-norm. ♦
Remark 3.3.6. Because ‖ · ‖∞ is only a seminorm, the L∞-norm limit of a
sequence is unique only up to sets of measure zero. That is, if fn → f and
fn → g in L∞-norm, then f and g need not be identical, but they will satisfy
f = g a.e. ♦



106 3 Measurable Functions

A sequence {fn}n∈N is Cauchy in L∞-norm if for each ǫ > 0 there exists
some N > 0 such that ‖fm − fn‖∞ < ε for all m, n ≥ N (compare Definition
1.1.2). A space in which every Cauchy sequence converges to an element of
the space is said to be complete. We prove next that L∞(E) is complete. Our
proof is very similar to the proof of Theorem 1.3.3, except that we need to
keep track of certain sets of measure zero.

Lemma 3.3.7. If E ⊆ Rd is measurable and {fn}n∈N is a Cauchy sequence
in L∞(E), then there exists some function f ∈ L∞(E) such that fn → f in
L∞-norm as n → ∞.

Proof. Given positive integers m and n, let

Zmn =
{
|fm − fn| > ‖fm − fn‖∞

}
.

Lemma 3.3.2 tells us that Zmn has measure zero, so Z =
S

m,nZmn has
measure zero as well.

Given ε > 0, there is some N such that ‖fm − fn‖∞ < ε for all m, n ≥ N.
Therefore, if x /∈ Z then |fm(x)−fn(x)| ≤ ‖fm −fn‖∞ < ε for all m, n ≥ N.
Hence {fn(x)}n∈N is a Cauchy sequence of scalars when x /∈ Z, so it must
converge, say to f(x). This gives us a function f that is defined at almost
every point of E.

If n ≥ N, then for every x /∈ Z we have

|f(x) − fn(x)| = lim
m→∞

|fm(x) − fn(x)| ≤ ‖fm − fn‖∞ < ε.

Since Z has measure zero, this implies that fn → f a.e., so f is measurable.
Further, the computation above shows that ‖f − fn‖∞ ≤ ε whenever n ≥ N,
so fn → f in L∞-norm. ⊓⊔

A normed space that is complete is called a Banach space (see Definition
1.2.5). Technically, the fact that the L∞-norm is only a seminorm means that
L∞(E) is not a Banach space with respect to ‖ · ‖∞. However, we will see
in Section 7.2.2 that if we identify functions that are equal a.e. then ‖ · ‖∞
becomes a norm and, with this identification, L∞(E) is a Banach space.

Problems

3.3.8. Let E ⊆ Rd be measurable. Given functions fn, f ∈ L∞(E), prove
that fn → f in L∞-norm if and only if there exists a set Z ⊆ E with |Z| = 0
such that fn → f uniformly on E\Z.

3.3.9. For each a ∈ R, let fa = χ
[a,a+1]. Prove that {fa}a∈R is an uncountable

set of functions in L∞(R) such that ‖fa−fb‖∞ = 1 for all real numbers a 6= b.
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3.3.10. Let E be a measurable subset of Rd such that |E| > 0. Prove that
there exist countably many disjoint measurable subsets E1, E2, . . . of E such
that |Ek| > 0 for every k. Use this to show that there exist uncountably many
functions fi ∈ L∞(E) such that ‖fi − fj‖∞ = 1 for all i 6= j.

3.4 Egorov’s Theorem

Suppose that we have a sequence of functions {fn}n∈N defined on a domain E.
There are many different ways in which the functions fn might “converge”
to a limit function f. For example, fn converges pointwise to f if

f(x) = lim
n→∞

fn(x) for every x ∈ E,

and we declared in Notation 3.2.8 that fn converges pointwise a.e. to f (de-
noted fn → f a.e.) if

f(x) = lim
n→∞

fn(x) for a.e. x ∈ E.

Sometimes we need to know that fn converges to f in other senses. For
example, fn converges uniformly to f if the uniform norm of the difference
between f and fn converges to zero, i.e., if

lim
n→∞

‖f − fn‖u = lim
n→∞

(
sup
x∈E

|f(x) − fn(x)|
)

= 0.

Convergence in L∞-norm, which was introduced in Definition 3.3.5, is essen-
tially an “almost everywhere” version of uniform convergence. Specifically,
fn converges to f in L∞-norm if

lim
n→∞

‖f − fn‖∞ = lim
n→∞

(
esssup

x∈E
|f(x) − fn(x)|

)
= 0.

For the moment we will focus on pointwise and uniform convergence. Uni-
form convergence implies pointwise convergence, but the next example shows
that pointwise convergence does not imply uniform convergence in general.

Example 3.4.1 (Shrinking Triangles). Set E = [0, 1]. For each n ∈ N, let fn

be the continuous function on [0, 1] defined by

fn(x) =





0, if x = 0,

linear, if 0 < x < 1
2n ,

1, if x = 1
2n ,

linear, if 1
2n < x < 1

n ,

0, if 1
n ≤ x ≤ 1.
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Fig. 3.2 Graphs of the functions f2 (dashed) and f10 (solid) from Example 3.4.1.

For each fixed point x ∈ [0, 1] we have fn(x) → 0 as n → ∞ (see the
illustration in Figure 3.2). Hence fn converges to zero pointwise. However,
fn does not converge uniformly to the zero function because for every positive
integer n we have

‖f − fn‖u = sup
x∈[0,1]

|0 − fn(x)| = 1. ♦

Even though the Shrinking Triangles of Example 3.4.1 do not converge
uniformly (or in L∞-norm) on the domain [0, 1], we can find a subset of [0, 1]
on which we have uniform convergence. For example, if 0 < δ < 1, then for
all n large enough the restriction of fn to the interval [δ, 1] is zero. Hence fn

converges uniformly to the zero function on the interval [δ, 1]. We obtain uni-
form convergence on [δ, 1], no matter how small we take δ. Egorov’s Theorem,
which we prove next, shows that this example is typical: If a sequence of mea-
surable functions converges pointwise a.e. on a set that has finite measure,
then there is a “large” subset of the domain on which the functions converge
uniformly. In the proof, we use the notion of the limsup of a sequence of sets
that was introduced in Definition 2.1.14.

Theorem 3.4.2 (Egorov’s Theorem). Let E be a measurable subset of Rd

with |E| < ∞. Suppose that {fn}n∈N is a sequence of measurable functions
on E (either complex-valued or extended real-valued) such that fn → f a.e.,
where f is finite a.e. Then for each ε > 0 there exists a measurable set A ⊆ E
such that :

(a) |A| < ε, and

(b) fn converges uniformly to f on E\A, i.e.,

lim
n→∞

‖(f − fn) · χAC‖u = lim
n→∞

(
sup
x/∈A

|f(x) − fn(x)|
)

= 0.

Proof. Case 1: Complex-Valued Functions. Assume that the fn are complex-
valued. Since the pointwise a.e. limit of measurable functions is measurable,
we know that f is measurable.
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Let Z be the set of points where fn(x) does not converge to f(x). By
hypothesis, Z has measure zero. In order to quantify more precisely the points
where fn(x) is far from f(x), for each k ∈ N we let

Zk =
{

x ∈ E : |f(x) − fn(x)| ≥ 1
k for infinitely many n

}
.

Since Zk ⊆ Z, we have |Zk| = 0. By Exercise 2.1.15,

Zk = lim sup
n→∞

{
|f − fn| ≥ 1

k

}
=

∞⋂
n=1

An(k),

where for k, n ∈ N we take

An(k) =
∞⋃

m=n

{
|f − fm| ≥ 1

k

}
.

Each set An(k) is measurable. By construction,

A1(k) ⊇ A2(k) ⊇ · · · and
∞⋂

n=1
An(k) = Zk.

Since |E| has finite measure we can therefore apply continuity from above to
obtain

lim
n→∞

|An(k)| = |Zk| = 0. (3.5)

Fix any ε > 0. By equation (3.5), for each integer k ∈ N we can find an
integer nk ∈ N such that ∣∣Ank

(k)
∣∣ <

ε

2k
.

By subadditivity, the set

A =
∞⋃

k=1

Ank
(k)

has measure |A| < ε. Moreover, if x /∈ A then x /∈ Ank
(k) for any k, so

|f(x) − fm(x)| < 1
k for all m ≥ nk.

In summary, we have found a set A with measure |A| < ε such that for
each integer k there exists an integer nk such that

m ≥ nk =⇒ sup
x/∈A

|f(x) − fm(x)| ≤ 1

k
.

This says that fn converges uniformly to f on E\A.

Case 2: Extended Real-Valued Functions. Now assume that fn and f are
extended real-valued functions with f finite a.e. Let Y = {f = ±∞} be the
set of measure zero consisting of all points where f(x) = ±∞. Then F = E\Y
is measurable, f is finite on F, and fn → f a.e. on F. Now repeat the proof
of Case 1 with E replaced by F. Although fn(x) can be ±∞, if x ∈ F then
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f(x)− fn(x) never takes an indeterminate form, and the proof proceeds just
as before to construct a measurable set A ⊆ F such that |A| < ε and fn → f
uniformly on F \A. Consequently, B = A ∪ Y is a measurable subset of E
that satisfies |B| = |A| < ε, and fn → f uniformly on E\B. ⊓⊔

The hypothesis in Egorov’s Theorem that E has finite measure is necessary,
as is the hypothesis that f is finite a.e. (see Problem 3.4.5).

The type of convergence that appears in the conclusion of Egorov’s The-
orem is sometimes called “almost uniform convergence.” Here is the precise
definition.

Definition 3.4.3 (Almost Uniform Convergence). Let E be a measur-
able subset of Rd. We say that functions fn : E → F converge almost uni-
formly to f on the set E, and write fn → f almost uniformly, if for each
ε > 0 there exists a measurable set A ⊆ E such that:

(a) |A| < ε, and

(b) fn converges uniformly to f on E\A. ♦

The following exercise gives relations between L∞-norm convergence, al-
most uniform convergence, and pointwise a.e. convergence.

Exercise 3.4.4. Let E be a measurable subset of Rd, and let fn, f : E → F
be measurable functions on E. Prove the following statements.

(a) If fn → f in L∞-norm, then fn → f almost uniformly.

(b) If fn → f almost uniformly, then fn → f pointwise a.e. ♦

The converse of the implications in Exercise 3.4.4 fail in general; see Prob-
lem 3.4.6. On the other hand, Egorov’s Theorem tells us that if |E| < ∞,
then pointwise a.e. convergence implies almost uniform convergence. These
and other implications among various types of convergence criteria are sum-
marized later in Figure 3.3 (also see Figures 4.3 and 7.5).

Problems

3.4.5. (a) Show by example that the assumption in Egorov’s Theorem that
|E| < ∞ is necessary.

(b) Show by example that, even if we assume |E| < ∞, the assumption in
Egorov’s Theorem that f is finite a.e. is necessary.

3.4.6. (a) Exhibit a sequence of functions that converges almost uniformly
but does not converge in L∞-norm.

(b) Exhibit a sequence of functions that converges pointwise a.e. but does
not converge almost uniformly.
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3.4.7. Let E ⊆ Rd be a measurable set such that |E| < ∞, and assume that
fn and f are measurable functions that are finite a.e. and satisfy fn → f a.e.
on E. Prove that there exist measurable sets Ek ⊆ E such that E\

(
S∞

k=1Ek

)

has measure zero and for each individual k we have that fn → f uniformly
on Ek. Even so, show by example that fn need not converge uniformly to f
on E.

3.5 Convergence in Measure

In the preceding section we saw several ways to quantify the meaning of the
convergence of a sequence of functions. We introduce another important type
of convergence criterion in this section.

Definition 3.5.1 (Convergence in Measure). Let E ⊆ Rd be measurable,
and assume that functions fn, f : E → F are measurable and finite a.e. We

say that fn converges in measure to f on E, and write fn
m→ f, if for every

ε > 0 we have
lim

n→∞

∣∣{|f − fn| > ε}
∣∣ = 0. ♦ (3.6)

Writing out equation (3.6) explicitly, we see that fn
m→ f if and only if for

every ε > 0 and every η > 0, there is an N > 0 such that

n ≥ N =⇒
∣∣{|f − fn| > ε}

∣∣ < η.

Problem 3.5.17 gives some other equivalent formulations of convergence in
measure.

To summarize Definition 3.5.1, convergence in measure requires that if we
fix any ε > 0, then the measure of the set where f and fn differ by more
than ε must decrease to zero as n → ∞. Here is an example.

Example 3.5.2 (Shrinking Boxes I). The domain for this example is E = [0, 1].
Let f = 0, and set fn = χ

[0, 1
n

]. If we fix 0 < ε < 1, then the set of points

where fn differs from 0 by more than ε is precisely the interval [0, 1
n ], which

has measure 1
n . Therefore fn

m→ 0. ♦

The following example shows that pointwise a.e. convergence does not
imply convergence in measure in general.

Example 3.5.3 (Boxes Marching to Infinity). For this example we take E = R.
The functions fn = χ

[n,n+1] converge pointwise to the zero function. However,

if we fix 0 < ε < 1 then

{
|0 − fn| > ε

}
= [n, n + 1],
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which has measure 1. Therefore fn does not converge in measure to the zero

function. In fact, there is no function f such that fn
m→ f (why?). ♦

Remark 3.5.4. We will see in Corollary 3.5.8 that if E has finite measure then
pointwise a.e. convergence on E does imply convergence in measure. ♦

The following example shows that convergence in measure does not imply
pointwise a.e. convergence in general (even if the domain has finite measure).

Example 3.5.5 (Boxes Marching in Circles). Set E = [0, 1], and define

f1 = χ
[0,1],

f2 = χ
[0, 1

2
], f3 = χ

[ 1
2
,1],

f4 = χ
[0, 1

3
], f5 = χ

[ 1
3
, 2
3
], f6 = χ

[ 2
3
,1],

f7 = χ
[0, 1

4
], f8 = χ

[ 1
4
, 1
2
], f9 = χ

[ 1
2
, 3
4
], f10 = χ

[ 3
4
,1],

and so forth. Picturing the graphs of these functions as boxes, the boxes
march from left to right across the interval [0, 1], then shrink in size and
march across the interval again, and do this over and over.

Fix 0 < ε < 1. For the indices n = 1, . . . , 10, the Lebesgue measure of
{|fn| > ε} has the values

1,
1

2
,

1

2
,

1

3
,

1

3
,

1

3
,

1

4
,

1

4
,

1

4
,

1

4
.

We see that
lim

n→∞

∣∣{|0 − fn| > ε}
∣∣ = 0,

so fn
m→ 0, i.e., fn converges in measure to the zero function.

We do not have pointwise a.e. convergence in this example, because no
matter what point x ∈ [0, 1] that we choose, there are infinitely many different
values of n such that fn(x) = 0, and infinitely many n such that fn(x) = 1.
Hence fn(x) does not converge at any point x in [0, 1]. This sequence of
functions {fn}n∈N does not converge pointwise a.e. to any function f. ♦

Even though the Marching Boxes in Example 3.5.5 do not converge point-
wise a.e., there is a subsequence of these boxes that converges pointwise a.e.
For example, the subsequence f1, f2, f4, f7, . . . converges pointwise a.e. to the
zero function. The next lemma shows that every sequence of functions that
converges in measure contains a subsequence that converges pointwise almost
everywhere.

Lemma 3.5.6. Let E be a measurable subset of Rd, and assume that func-
tions fn, f : E → F are measurable and finite a.e. If fn

m→ f, then there exists
a subsequence {fnk

}k∈N such that fnk
→ f a.e.
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Proof. Since fn
m→ f, we can find indices n1 < n2 < · · · such that for each

n ≥ nk we have ∣∣{|f − fn| > 1
k}

∣∣ ≤ 2−k.

Define Ek =
{
|f − fnk

| > 1
k

}
, and set

Z =
∞⋂

m=1

∞⋃
k=m

Ek = lim sup
k→∞

Ek.

Since
∑

|Ek| < ∞, the Borel–Cantelli Lemma (Exercise 2.1.16) implies that
|Z| = 0. Also, since

ZC =
∞⋃

m=1

∞⋂
k=m

EC
k = lim inf

k→∞
EC

k ,

Exercise 2.1.15 implies that if x /∈ Z then there exists some m such that
x /∈ Ek for all k ≥ m. Thus |f(x)− fnk

(x)| ≤ 1
k for all k ≥ m, so we conclude

that fnk
(x) → f(x) for all x /∈ Z. ⊓⊔

Although pointwise a.e. convergence does not imply convergence in mea-
sure, the following exercise shows that almost uniform convergence does imply
convergence in measure.

Exercise 3.5.7. Assume E ⊆ Rd is measurable, and functions fn, f : E → F
are measurable and finite a.e. Prove that if fn converges to f almost uni-
formly, then fn

m→ f. ♦

However, convergence in measure does not imply almost uniform conver-
gence in general (consider the “Boxes Marching in Circles” in Example 3.5.5).

Combining Exercise 3.5.7 with Egorov’s Theorem, we obtain the following
result.

Corollary 3.5.8. Let E be a measurable subset of Rd, and assume that func-
tions fn, f : E → F are measurable and finite a.e. If |E| < ∞ and fn → f

a.e., then fn
m→ f.

Proof. Since E has finite measure, Egorov’s Theorem tells us that pointwise
almost everywhere convergence on E implies almost uniform convergence
on E. By Exercise 3.5.7, this implies convergence in measure. ⊓⊔

We summarize in Figure 3.3 some of the relationships between the types of
convergence criteria that we have studied so far in this chapter (these impli-
cations follow from Exercise 3.4.4, Lemma 3.5.6, Exercise 3.5.7, and Corollary
3.5.8). We will introduce other convergence criteria in later chapters, and we
update Figure 3.3 accordingly in Figures 4.3 and 7.5.

Most types of convergence criteria have a corresponding Cauchy criterion.
Here is the Cauchy criterion for convergence in measure.
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pointwise a.e.
convergence

⇓ (if |E| < ∞)

L∞-norm
convergence

=⇒
almost uniform

convergence
=⇒

convergence
in measure

=⇒
pointwise a.e.
convergence of
a subsequence

⇓

pointwise a.e.
convergence

Fig. 3.3 Relations among certain convergence criteria (valid for sequences of functions
that are either complex-valued or extended real-valued but finite a.e.).

Definition 3.5.9 (Cauchy in Measure). Let E be a measurable subset of
Rd, and assume functions fn : E → F are measurable and finite a.e. We say
that the sequence {fn}n∈N is Cauchy in measure on E if for every ε > 0,
there exists an N > 0 such that

m, n ≥ N =⇒
∣∣{|fm − fn| > ε}

∣∣ < ε. ♦

The following theorem shows that every sequence that is Cauchy in mea-
sure must converge in measure to some measurable function (see Problem
3.5.17 for some further equivalent reformulations of convergence in measure).

Theorem 3.5.10. Let E ⊆ Rd be a measurable set. If {fn}n∈N is a sequence
of measurable functions that is Cauchy in measure on E, then there exists a
measurable function f such that fn

m→ f.

Proof. If {fn}n∈N is Cauchy in measure then, just as in Problem 1.1.21, we
can find indices n1 < n2 < · · · such that

∣∣{|fnk+1
− fnk

| > 2−k}
∣∣ ≤ 2−k for all k ∈ N.

For simplicity of notation, let

gk = fnk
, Ek =

{
|gk+1 − gk| > 2−k

}
, Hm =

∞⋃
k=m

Ek.

Since
∑ |Ek| < ∞, the Borel–Cantelli Lemma implies that

Z =
∞⋂

m=1
Hm =

∞⋂
m=1

∞⋃
k=m

Ek = lim sup
k→∞

Ek

has measure zero. Since ZC = lim infEC
k is the set of points that belong to

all but finitely many EC
k , if x /∈ Z then there exists some N > 0 such that

x /∈ Ek for all k ≥ N. That is, |gk+1(x) − gk(x)| ≤ 2−k for all k ≥ N, so
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{gk(x)}k∈N is a Cauchy sequence of scalars, and must therefore converge.
Setting

f(x) =





lim
k→∞

gk(x), if x /∈ Z,

0, if x ∈ Z,

we see that f is measurable and gk → f pointwise a.e.
Now we will show that gk converges in measure to f. Fix ε > 0, and choose

m large enough that 2−m ≤ ε. If x /∈ Hm, then for all n > k > m we have

|gn(x)− gk(x)| ≤
n−1∑

j=k

|gj+1(x)− gj(x)| ≤
n−1∑

j=k

2−j ≤ 2−k+1 ≤ 2−m ≤ ε.

Taking the limit as n → ∞, this implies that |f(x)−gk(x)| ≤ ε for all x /∈ Hm

and k > m. Hence
{
|f − gk| > ε

}
⊆ Hm for k > m, and therefore

lim sup
k→∞

∣∣{|f − gk| > ε}
∣∣ ≤ |Hm| ≤ 2−m+1.

This is true for every m, so we conclude that limk→∞ |{|f − gk| > ε}| = 0,

and therefore gk
m→ f.

So, we have shown that {fn}n∈N has a subsequence {gk}k∈N that converges
in measure. This, combined with the fact that {fn}n∈N is Cauchy in measure,

implies that fn
m→ f (see Problem 3.5.16). ⊓⊔

Problems

3.5.11. Let fn(x) = x/n for x ∈ R. Prove that fn converges pointwise to
the zero function, but fn does not converge in measure to 0 (or any other
function).

3.5.12. For each n ∈ N, define

fn(x) =
1 − |x|n
1 + |x|n , for x ∈ R.

Show that there exists a measurable function f such that fn → f pointwise
and fn

m→ f, but fn does not converge to f uniformly.

3.5.13. Let E ⊆ Rd be a measurable set, and assume fn, f, gn, g : E → F
are measurable and finite a.e. Prove the following statements.

(a) If fn
m→ f and fn

m→ g, then f = g a.e.

(b) If fn
m→ f and gn

m→ g, then fn + gn
m→ f + g.

(c) If |E| < ∞, fn
m→ f, and gn

m→ g, then fn gn
m→ fg.
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(d) The conclusion of part (c) can fail if |E| = ∞.

(e) If fn
m→ f and there is some δ > 0 such that |fn| ≥ δ a.e. for every n,

then 1
fn

m→ 1
f .

3.5.14. Let E be a measurable subset of Rd, and assume that fn, f : E → F
are measurable and finite a.e. Prove that the following two statements are
equivalent.

(a) fn
m→ f.

(b) If {gn}n∈N is any subsequence of {fn}n∈N, then there exists a subse-

quence {hn}n∈N of {gn}n∈N such that hn
m→ f.

3.5.15. Let E ⊆ Rd be measurable, and let fn, f : E → F be measurable
functions that are finite a.e. Assume that ϕ : R → R (if F = [−∞,∞]) or
ϕ : C → C (if F = C) is continuous.

(a) Suppose that fn
m→ f and ϕ is uniformly continuous, and prove that

ϕ ◦ fn
m→ϕ ◦ f. Show by example that this can fail if ϕ is continuous but not

uniformly continuous.

(b) Prove that if fn
m→ f and |E| < ∞, then ϕ ◦ fn

m→ϕ ◦ f. Show that this
can fail when |E| = ∞.

3.5.16. Let E ⊆ Rd be measurable, and let fn and f be measurable functions
on E, either complex-valued or extended real-valued but finite a.e. Prove that
if {fn}n∈N is Cauchy in measure and there exists a subsequence such that

fnk

m→ f, then fn
m→ f.

3.5.17. Let E ⊆ Rd be a measurable set. Let fn and f be measurable func-
tions on E, either complex-valued or extended real-valued but finite a.e. Prove
that the following four statements are equivalent.

(a) There exists a measurable function f such that fn
m→ f. That is, for

each ε, η > 0 there exists an N > 0 such that

n ≥ N =⇒
∣∣{|f − fn| > ε}

∣∣ < η.

(b) There exists a measurable function f such that for every ε > 0 there
exists an N > 0 such that

n ≥ N =⇒
∣∣{|f − fn| > ε}

∣∣ < ε.

(c) For each ε, η > 0 there exists an N > 0 such that

m, n ≥ N =⇒
∣∣{|fm − fn| > ε}

∣∣ < η.

(d) {fn}n∈N is Cauchy in measure, i.e., for each ε > 0 there exists an
N > 0 such that

m, n ≥ N =⇒
∣∣{|fm − fn| > ε}

∣∣ < ε.
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3.6 Luzin’s Theorem

In this section we will use Egorov’s Theorem and facts about approximation
by simple functions to prove Luzin’s Theorem, which, in essence, states that
every measurable function is “nearly continuous.” Precisely, if f is a measur-
able function, then there is a closed subset F such that f is continuous on F
and the complement of F has measure ε.

Given a function f : E → C and a set F ⊆ E, recall that the restriction
of f to F is the function f |F : F → C defined by f |F (x) = f(x) for x ∈ F.
We say that f is continuous on F if f |F is a continuous function. There
are various equivalent ways to define continuity, but for the purposes of this
result it will be most convenient to use the formulation, given in Exercise
1.1.15, that a function g is continuous on F if and only if

∀xn, x ∈ F, xn → x =⇒ g(xn) → g(x).

Using this notation, we can state Luzin’s Theorem as follows.

Theorem 3.6.1 (Luzin’s Theorem). Let E be a bounded, measurable sub-
set of Rd, and let f : E → F be measurable and finite a.e. Then for each ε > 0,
there exists a closed set F ⊆ E such that |E\F | < ε and f |F is continuous.

Proof. Step 1. Let φ =
∑N

k=1 ckχEk
be the standard representation of a

simple function φ on E, and fix ε > 0. Since each subset Ek is measurable,
Lemma 2.2.15 implies that there exist closed sets Fk ⊆ Ek such that

|Ek\Fk| <
ε

N
, for k = 1, . . . , N.

The set F = F1 ∪ · · · ∪ FN is closed, and since E1, . . . , EN partition E we
have |E\F | < ε. Since E is bounded, the sets F1, . . . , FN are compact and
disjoint. Consequently, Fj is separated from Fk by a positive distance when
j 6= k (see Problem 2.2.31). Since φ is constant on each individual set Fk, it
follows that the restriction of φ to F is continuous.

Step 2. Now let f be an arbitrary measurable function on E, and fix ε > 0.
By Corollary 3.2.15, there exist simple functions φn that converge pointwise
to f on E. Applying Step 1, for each integer n > 0 we can find a closed set
Fn ⊆ E such that

|E\Fn| <
ε

2n+1
and φn|Fn

is continuous.

By Egorov’s Theorem, there exists a measurable set A ⊆ E with measure
|A| < ε/4 such that φn converges to f uniformly on E\A. By Lemma 2.2.15,
there exists a closed set F0 ⊆ E\A such that

|(E\A)\F0| <
ε

4
.
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Writing E\F0 = (E\A)\F0 ∪ A, we see that

|E\F0| ≤ |(E\A)\F0| + |A| <
ε

4
+

ε

4
=

ε

2
.

Further, φn converges to f uniformly on F0 since F0 is contained in E\A.
Next, let

F =
∞⋂

n=0
Fn.

Since F is closed and bounded, it is compact. Further,

|E\F | =
∣∣∣
∞⋃

n=0
(E\Fn)

∣∣∣ ≤
∞∑

n=0

|E\Fn| <

∞∑

n=0

ε

2n+1
= ε.

Since φn is continuous on Fn, it is continuous on the smaller set F. Thus
{φn|F }n∈N is a sequence of continuous functions that converges uniformly
on F to f |F . Therefore f |F is continuous, because the uniform limit of a
sequence of continuous functions is continuous (see Theorem 1.3.3). ⊓⊔

Luzin’s Theorem tells us that a measurable function f on a bounded set E
is continuous on a closed subset F that is “nearly all” of E. Because F is
closed and Rd is a metric space, the Tietze Extension Theorem implies that
there exists a continuous function g : Rd → C such that g = f on the set F (for
one proof, see [Heil18, Thm. 4.8.2]). Hence g|E is a continuous function on E
that equals f on the subset F. Problem 3.6.2 incorporates this conclusion into
the statement of Luzin’s Theorem, and additionally removes the hypothesis
in Theorem 3.6.1 that the set E is bounded.

Problems

3.6.2. Let E be a measurable subset of Rd, and assume that f : E → F is
finite a.e. Prove that the following three statements are equivalent.

(a) f is measurable.

(b) For each ε > 0, there exists a closed set F ⊆ E such that |E\F | < ε
and f |F is continuous.

(c) For each ε > 0, there exist a closed set F ⊆ E and a continuous
function g : E → C such that |E\F | < ε and g(x) = f(x) for all x ∈ F.



Chapter 4

The Lebesgue Integral

In this chapter we define and study the Lebesgue integral of functions on Rd

(or on subsets of Rd). We first define the Lebesgue integral for nonnegative
functions in Section 4.1, and in Section 4.2 prove two fundamental results
on convergence of integrals: Fatou’s Lemma and the Monotone Convergence
Theorem. We define the integral of extended real-valued and complex-valued
functions in Section 4.3. Integrable functions (those functions for which the
integral of |f | is finite) are introduced in Section 4.4, as is the Lebesgue space
L1(E), which is the set of all integrable functions on E. In Section 4.5 we
prove the Dominated Convergence Theorem, or DCT, which is one of the most
useful theorems in analysis. In particular, we use the DCT to show that inte-
grable functions can be well-approximated by a wide variety of functions that
have special properties, including simple functions, continuous functions, and
step functions. Among other applications, this allows us to characterize Rie-
mann integrable functions and to establish the relationship between Lebesgue
and Riemann integrals. Finally, Section 4.6 covers the important theorems of
Fubini and Tonelli, which tell us when we can exchange the order of iterated
integrals.

4.1 The Lebesgue Integral of Nonnegative Functions

We will define the Lebesgue integral of a measurable function in this chapter.
There are some functions whose integral is undefined, but we will be able to
define the integral of “most” measurable functions. If a function happens to
be Riemann integrable, then we will see that its Lebesgue integral coincides
with its Riemann integral. The Riemann integral is quite restrictive in the
sense that only a “few” functions are Riemann integrable. For example, the
Dirichlet function χ

Q, which is discontinuous at every point, is not Riemann
integrable, but it is Lebesgue integrable. In fact, since χ

Q = 0 a.e., we will
see that

∫
E

χ
Q =

∫
E

0 = 0 for every measurable set E ⊆ R.
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In this section and the next we will focus on the definition and properties of
the Lebesgue integral of nonnegative measurable functions, and in Section 4.3
we will consider how to extend the definition of the integral to measurable
functions that are extended real-valued or complex-valued. An important
difference between nonnegative functions and generic functions is that we will
be able to assign a value (in the extended real sense) to the integral of every
nonnegative measurable function. When we consider arbitrary functions in
Section 4.3, we will see that we can encounter indeterminate forms when
attempting to define the integral, and in such cases the integral is undefined.

Fig. 4.1 The shaded region is A × [0, 1], which is the region under the graph of χA.

It is not obvious how we should define the Lebesgue integral of an arbitrary
nonnegative function, so we begin with a class of functions for which we know
how we want the integration to come out, namely, characteristic functions. If
we fix a measurable set A ⊆ Rd, then χA is 0 outside of A and is identically 1
on A. The “region under the graph” of χA is the set A× [0, 1] (see Figure 4.1).
At least intuitively, the integral of a nonnegative function should be the “area
of the region under its graph.” Therefore it is reasonable to define the integral
of χA to be the measure of A× [0, 1]. Exercise 2.3.6 showed that the Lebesgue
measure of A × [0, 1] (which is a measurable subset of Rd+1) is the product
of the measures of A and [0, 1], and so we define the integral of χA to be∫

χA = |A|.
This gets us started. In the remainder of this section we will define the

integral of finite linear combinations of characteristic functions, which are
precisely the simple functions defined in Section 3.2.4, and then see how to
use simple functions to define the integral of an arbitrary nonnegative measur-
able function. Along the way we will need to consider convergence issues—for
example, if functions fn converge to a function f in some sense, will it be
true that the integral of fn converges to the integral of f? Unfortunately,
this does not always happen. In particular, we will see examples of functions
fn that converge pointwise to some function f, yet

∫
fn does not converge

to
∫

f (Example 4.2.6). On the other hand, if we impose stricter hypotheses
on the fn than just pointwise convergence, then we can sometimes infer con-
vergence of the integrals. For example, the Monotone Convergence Theorem
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(Theorem 4.2.1) will show that if nonnegative functions fn(x) increase mono-
tonically to f(x) at each point x, then

∫
fn converges to

∫
f.

4.1.1 Integration of Nonnegative Simple Functions

Recall from Definition 3.2.11 that a simple function is a measurable function
φ, defined on a set E, that takes only finitely many distinct scalar values. If
these distinct values are c1, . . . , cN , then the standard representation of φ is

φ =

N∑

k=1

ckχEk
,

where
Ek = φ−1{ck} =

{
φ = ck

}
, for k = 1, . . . , N.

The sets Ek are disjoint and measurable, and they partition the set E.
To define the integral of a nonnegative simple function we simply linearly

extend the idea that the integral of a characteristic function χA is the measure
of the set A. In considering this definition, recall our convention that 0·∞ = 0.

Definition 4.1.1 (Integral of a Nonnegative Simple Function). Let
φ be a nonnegative simple function on a measurable set E ⊆ Rd, and let

φ =
∑N

k=1 ckχEk
be its standard representation. The Lebesgue integral of φ

over E is ∫

E

φ =

∫

E

φ(x) dx =

N∑

k=1

ck |Ek|. ♦

The integral of any nonnegative simple function is a uniquely defined ex-
tended real number that lies in the range 0 ≤

∫
E

φ ≤ ∞. Some of the basic
properties of the Lebesgue integral of nonnegative simple functions are given
in the next lemma.

Lemma 4.1.2. If φ and ψ are nonnegative simple functions defined on a
measurable set E ⊆ Rd and c ≥ 0, then the following statements hold.

(a)

∫

E

(φ + ψ) =

∫

E

φ +

∫

E

ψ and

∫

E

cφ = c

∫

E

φ.

(b) If E1, . . . , EN are any measurable subsets of E and c1, . . . , cN are any
nonnegative scalars, then

∫

E

N∑

k=1

ckχEk
=

N∑

k=1

ck |Ek|. (4.1)
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Proof. (a) The equality
∫

E
cφ = c

∫
E

φ, where c is a nonnegative real scalar,
follows directly from the definition of the integral of a simple function. To
address the integral of a sum, let

φ =

M∑

j=1

aj χEj
and ψ =

N∑

k=1

bk χFk

be the standard representations of φ and ψ. Then, by definition, {Ej}M
j=1 and

{Fk}N
k=1 are each partitions of E. Therefore, for each set Ej and Fk we have

Ej =
N⋃

k=1

(Ej ∩ Fk) and Fk =
M⋃

j=1

(Ej ∩ Fk),

where these are unions of disjoint sets. Therefore, by the definition of the
integral and the fact that Lebesgue measure is countably additive,

∫

E

φ =

M∑

j=1

aj |Ej | =

M∑

j=1

N∑

k=1

aj |Ej ∩ Fk| (4.2)

and ∫

E

ψ =

N∑

k=1

bk |Fk| =

N∑

k=1

M∑

j=1

bk |Ej ∩ Fk|. (4.3)

Summing, we obtain

∫

E

φ +

∫

E

ψ =
M∑

j=1

N∑

k=1

(aj + bk) |Ej ∩ Fk|. (4.4)

On the other hand, as we observed in equation (3.2),

φ + ψ =

M∑

j=1

N∑

k=1

(aj + bk)χEj∩Fk
. (4.5)

If this were the standard representation of φ+ψ, then Definition 4.1.1 would
immediately tell us that

∫

E

(φ + ψ) =

M∑

j=1

N∑

k=1

(aj + bk) |Ej ∩ Fk|. (4.6)

Unfortunately, equation (4.5) need not be the standard representation of
φ + ψ, since some values of aj + bk may coincide. However, because the sets
Ej ∩ Fk are disjoint, the standard representation of φ + ψ is obtained by
collecting together those sets Ej ∩ Fk that correspond to equal values of
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aj + bk. After writing out the integral of φ + ψ defined by this standard
representation and applying the countable additivity of Lebesgue measure,
we precisely obtain equation (4.6). Comparing equations (4.4) and (4.6), we
see that

∫
E

φ +
∫

E
ψ and

∫
E

(φ + ψ) are equal.

(b) Set ϕ =
∑N

k=1 ck χEk
. If this were the standard representation of ϕ,

then equation (4.1) would follow from the definition of the integral of a simple
function. The point of this part of the theorem is that equation (4.1) holds

even if ϕ =
∑N

k=1 ck χEk
is not the standard representation of ϕ. The proof

of this follows by applying part (a) and an argument by induction. ⊓⊔

We assign the proof of the following further properties of the integral to
the reader.

Exercise 4.1.3. Let φ and ψ be nonnegative simple functions defined on a
measurable set E ⊆ Rd. Prove the following statements.

(a) If φ ≤ ψ, then
∫

E
φ ≤

∫
E

ψ.

(b)
∫

E
φ = 0 if and only if φ = 0 a.e.

(c) If A ⊆ E is measurable, then φχA is a simple function and

∫

A

φ =

∫

E

φχA.

(d) If A1, A2, . . . are disjoint measurable subsets of E and A =
S

An, then

∫

A

φ =
∞∑

n=1

∫

An

φ.

(e) If A1 ⊆ A2 ⊆ · · · are nested measurable subsets of E and A =
S

An, then

∫

A

φ = lim
n→∞

∫

An

φ. ♦ (4.7)

Remark 4.1.4. Part (d) of Exercise 4.1.3 says that the integral satisfies
“countable additivity,” while part (e) is a form of “continuity from below”
for the integral. ♦

4.1.2 Integration of Nonnegative Functions

So far we have only defined the integral of nonnegative simple functions.
We will define the integral of an arbitrary nonnegative measurable function
f : E → [0,∞] in terms of approximations to f by simple functions. To
motivate this, suppose that φ is a simple function such that 0 ≤ φ ≤ f. In
this case, the region under the graph of φ is a subset of the corresponding
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region under the graph of f (consider Figure 3.1). Whatever the integral of f
turns out to be, we should have

∫
E

φ ≤
∫

E
f. Each simple function φ gives us

an approximation from below to the integral of f. We declare that
∫

E
f is the

supremum of
∫

E
φ over all approximations from below by simple functions.

Definition 4.1.5 (Lebesgue Integral of a Nonnegative Function). Let
E ⊆ Rd be a measurable set. If f : E → [0,∞] is a measurable function, then
the Lebesgue integral of f over E is

∫

E

f =

∫

E

f(x) dx = sup

{∫

E

φ : 0 ≤ φ ≤ f, φ simple

}
. ♦

Notation 4.1.6. When E is an interval (a, b), we usually write the integral

of f over (a, b) as
∫ b

a
f or

∫ b

a
f(x) dx. Because a singleton has measure zero,

the integral of f over (a, b) turns out to equal the integral of f over (a, b],
[a, b), or [a, b]. ♦

If f is a simple function, then Definitions 4.1.1 and 4.1.5 each assign a
meaning to the symbols

∫
E

f. The next lemma shows that there is no conflict
between these two meanings.

Lemma 4.1.7. If φ is a simple function, then the integral of φ given in Def-
inition 4.1.1 coincides with the integral of φ given in Definition 4.1.5.

Proof. Let
∫

E
φ denote the integral of φ given by Definition 4.1.1, and let

I = sup

{∫

E

ψ : 0 ≤ ψ ≤ φ, ψ simple

}
. (4.8)

If ψ is any simple function such that 0 ≤ ψ ≤ φ, then 0 ≤
∫

E
ψ ≤

∫
E

φ by

Exercise 4.1.3. Taking the supremum over all such ψ, we see that I ≤
∫

E
φ. On

the other hand, φ is a simple function and φ ≤ φ, so φ is one of the functions
ψ that we are taking the supremum over on the right side of equation (4.8).
Therefore we also have

∫
E

φ ≤ I. ⊓⊔

Next we derive some of the basic properties of the integral of a nonnegative
measurable function.

Lemma 4.1.8. Let E ⊆ Rd be a measurable set, and let f, g : E → [0,∞] be
nonnegative measurable functions.

(a) If A is a measurable subset of E, then
∫

A
f =

∫
E

f χA and
∫

A
f ≤

∫
E

f.

(b) If f ≤ g, then
∫

E
f ≤

∫
E

g.

(c) If c ≥ 0, then
∫

E
cf = c

∫
E

f.

(d) If
∫

E
f < ∞, then f(x) < ∞ for a.e. x ∈ E.
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Proof. (a) By Definition 4.1.5,

∫

A

f = sup

{∫

A

φ : 0 ≤ φ ≤ f, φ simple on A

}
.

Let φ be any simple function on A such that φ ≤ f on A, and let ψ be the
simple function on E that equals φ on A and is zero on E\A. Then

∫

A

φ =

∫

A

ψχA =

∫

E

ψχA (by Exercise 4.1.3(c))

≤
∫

E

f χA (since ψχA is simple and ψχA ≤ f χA).

Taking the supremum over all such simple functions φ, we conclude that∫
A

f ≤
∫

E
f χA. The converse inequality, and the inequality

∫
A

f ≤
∫

E
f,

follow similarly.

(b), (c) Exercise: Prove these parts.

(d) If f = ∞ on a set A that has positive measure, then for each n ∈ N

we have ∫

E

f ≥
∫

E

f χA ≥
∫

A

n = n |A|.

Since n is arbitrary, we conclude that
∫

E
f = ∞. ⊓⊔

Now we prove an inequality that relates the measure of the set where f
exceeds a number α to the integral of f. Although the proof of this inequality
is simple, it is a surprisingly useful result.

Theorem 4.1.9 (Tchebyshev’s Inequality). Let E be a measurable sub-
set of Rd, and let f : E → [0,∞] be a measurable nonnegative function. Then
for each real number α > 0 we have

|{f > α}| ≤ 1

α

∫

{f>α}

f ≤ 1

α

∫

E

f.

Proof. By definition, if x belongs to the set {f > α}, then f(x) > α. More-
over, {f > α} is a subset of E, so by combining this with monotonicity we
obtain

∫

E

f(x) dx ≥
∫

{f>α}

f(x) dx ≥
∫

{f>α}

α dx = α |{f > α}|. ⊓⊔

The following exercise shows that sets of measure zero “don’t matter”
when it comes to the value of an integral. The hint for the proof is to apply
Theorem 4.1.9 with α = 1/n.

Exercise 4.1.10. Let f : E → [0,∞] be a measurable, nonnegative function

defined on a measurable set E ⊆ Rd. Prove that
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∫

E

f = 0 ⇐⇒ f = 0 a.e. ♦

Problems

4.1.11. Exhibit a set E and a nonnegative measurable function f such that∫
E

f = ∞ yet f(x) < ∞ for every x ∈ E.

4.1.12. Let E be a measurable subset of Rd. Suppose that f and g are mea-
surable functions on E such that 0 ≤ f ≤ g and

∫
E

f < ∞. Prove that g − f
is measurable, 0 ≤

∫
E

(g − f) ≤ ∞, and, as extended real numbers,

∫

E

(g − f) =

∫

E

g −
∫

E

f.

4.2 The Monotone Convergence Theorem and Fatou’s
Lemma

Given measurable nonnegative functions f and g on E, intuition suggests
that

∫
E

(f + g) and
∫

E
f +

∫
E

g should be equal—but are they? Suppose
that φ is any simple function that satisfies 0 ≤ φ ≤ f, and ψ is any simple
function that satisfies 0 ≤ ψ ≤ g. Then φ + ψ is a simple function and
0 ≤ φ + ψ ≤ f + g, so

∫

E

φ +

∫

E

ψ =

∫

E

(φ + ψ) ≤
∫

E

(f + g).

Keeping ψ fixed and taking the supremum over all such simple functions φ,
it follows that ∫

E

f +

∫

E

ψ ≤
∫

E

(f + g).

Taking the supremum next over all such simple functions ψ, we obtain

∫

E

f +

∫

E

g ≤
∫

E

(f + g).

But this gives us only an inequality, not an equality. It is not at all clear
whether we can derive the opposite inequality by similar reasoning, for if we
start with an arbitrary simple function θ ≤ f + g, then it is not obvious how
to relate θ to simple functions that are bounded by f and g individually.

The difficulty here is that we have defined the integral to be a supremum
of approximations by simple functions, but in general the supremum of a
sum need not equal the sum of the suprema. Proving linearity of the integral
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would be much easier if we could employ limits instead of suprema. This raises
the important question of how limits interact with integrals. We will explore
this issue (which is a ubiquitous problem in analysis) and then consider the
integral of a sum.

4.2.1 The Monotone Convergence Theorem

The following result (also known as the Beppo Levi Theorem) shows that if
nonnegative measurable functions fn increase monotonically to a function f,
then the integrals of the fn converge to the integral of f. The shorthand
notation fn ր f means that {fn(x)}n∈N is monotone increasing at each
point x and fn(x) → f(x) pointwise as n → ∞.

Theorem 4.2.1 (Monotone Convergence Theorem). Let E ⊆ Rd be a
measurable set, and let fn : E → [0,∞] be measurable functions on E such
that fn ր f. Then

lim
n→∞

∫

E

fn =

∫

E

f.

Proof. By hypothesis, for each x ∈ E we have (in the extended real sense)
that

f1(x) ≤ f2(x) ≤ · · · and f(x) = lim
n→∞

fn(x).

Consequently, Lemma 4.1.8(b) implies that we at least have the inequalities

0 ≤
∫

E

f1 ≤
∫

E

f2 ≤ · · · ≤
∫

E

f ≤ ∞. (4.9)

Note that we have not assumed that any of the integrals on the preceding
line are finite. However, an increasing sequence of nonnegative extended real
numbers must converge to a nonnegative extended real number, so

I = lim
n→∞

∫

E

fn (4.10)

exists in the extended real sense. Further, it follows from equation (4.9) that
0 ≤ I ≤

∫
E

f ≤ ∞. We must prove that I ≥
∫

E
f.

Let φ be any simple function such that 0 ≤ φ ≤ f, and fix 0 < α < 1. Set
En =

{
fn ≥ αφ

}
, and observe that

E1 ⊆ E2 ⊆ · · · .

Further,
S

En = E (this is where we use the assumption α < 1). The con-
tinuity from below property of the integral given in equation (4.7) therefore
implies that

∫
En

φ →
∫

E
φ. Consequently,



128 4 The Lebesgue Integral

I = lim
n→∞

∫

E

fn (definition of I)

= lim sup
n→∞

∫

E

fn (lim = limsup when the limit exists)

≥ lim sup
n→∞

∫

En

fn (since En ⊆ E)

≥ lim sup
n→∞

∫

En

αφ (by definition of En)

= α

∫

E

φ (by equation (4.7)).

Letting α → 1, we see that I ≥
∫

E
φ. Finally, by taking the supremum over

all such simple functions φ we obtain the inequality I ≥
∫

E
f. ⊓⊔

We often use the acronym MCT as an abbreviation for “Monotone Con-
vergence Theorem.” Note that equation (4.9) implies that the integrals

∫
E

fn

in the conclusion of the MCT increase monotonically to
∫

E
f.

Remark 4.2.2. We cannot replace Lebesgue integrals by Riemann integrals in
the MCT. For example, the characteristic function of the rationals, f = χ

Q,
is not Riemann integrable on the domain E = [0, 1]. However, we can create
a sequence of Riemann integrable functions that increase monotonically to f.
To do this, let {rn}n∈N be an enumeration of Q ∩ [0, 1], and let fn be the
function that takes the value 1 at the points r1, . . . , rn and is zero elsewhere,
i.e., fn = χ

{r1,...,rn}. The Riemann integral of fn on [0, 1] exists and is zero for
every n. Yet the Riemann integral of f does not exist, even though 0 ≤ fn ր f
on [0, 1]. ♦

Given a measurable function f : E → [0,∞], Theorem 3.2.14 showed us
how to construct simple functions φn that increase pointwise to f. Applying
the MCT to this sequence of functions, it follows that

∫
E

φn →
∫

E
f as

n → ∞. We will use this to prove that the integral of nonnegative functions
is finitely additive.

Theorem 4.2.3. Let E ⊆ Rd be a measurable set. If f, g : E → [0,∞] are
nonnegative measurable functions on E, then

∫

E

(f + g) =

∫

E

f +

∫

E

g.

Proof. Let φn and ψn be nonnegative simple functions such that φn ր f and
ψn ր g. Then φn + ψn is simple and φn + ψn ր f + g. Using Lemma 4.1.2
and the Monotone Convergence Theorem, we therefore obtain
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∫

E

(f + g) = lim
n→∞

∫

E

(φn + ψn) (MCT)

= lim
n→∞

(∫

E

φn +

∫

E

ψn

)
(Lemma 4.1.2)

=

∫

E

f +

∫

E

g (MCT). ⊓⊔

Combining Theorem 4.2.3 with the Monotone Convergence Theorem gives
us the following corollary for infinite series of nonnegative functions.

Corollary 4.2.4. If {fn}n∈N is a sequence of measurable, nonnegative func-
tions on a measurable set E ⊆ Rd, then

∫

E

∞∑

n=1

fn =
∞∑

n=1

∫

E

fn.

Proof. Since each fn is nonnegative, the series f(x) =
∑∞

n=1 fn(x) converges
in the extended real sense at each point x ∈ E. In fact, the partial sums
sN =

∑N
n=1 fn increase pointwise to f as N → ∞. Hence, by the MCT,∫

E
sN converges to

∫
E

f. On the other hand, Theorem 4.2.3 tells us that∫
E

sN =
∑N

n=1

∫
E

fn. Therefore

∫

E

f = lim
N→∞

∫

E

sN = lim
N→∞

N∑

n=1

∫

E

fn =

∞∑

n=1

∫

E

fn. ⊓⊔

We assign the proof of the following “countable additivity” and “continuity
from below” properties of the integral to the reader.

Exercise 4.2.5. Let E ⊆ Rd be a measurable set. Given a nonnegative mea-
surable function f : E → [0,∞], prove the following statements.

(a) If A1, A2, . . . are disjoint measurable subsets of E and A =
S

An, then

∫

A

f =

∞∑

n=1

∫

An

f.

(b) If A1 ⊆ A2 ⊆ · · · are nested measurable subsets of E and A =
S

An, then

∫

A

f = lim
n→∞

∫

An

f. ♦
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4.2.2 Fatou’s Lemma

Suppose that fn : E → [0,∞] is a measurable function for each n ∈ N,
and fn → f pointwise on E. Must

∫
E

fn converge to
∫

E
f? The Monotone

Convergence Theorem says that if fn increases pointwise to f, then this is
the case. Unfortunately, the following example shows that convergence of the
integrals can fail if our sequence is not monotonically increasing.

Example 4.2.6 (Shrinking Boxes II). Let E = [0, 1] and set fn = nχ
(0, 1

n
].

Then fn(x) → 0 for every x ∈ R, yet
∫ 1

0
fn = 1 for every n. Hence

∫ 1

0

(
lim

n→∞
fn

)
= 0 < 1 = lim

n→∞

∫ 1

0

fn.

Thus, for these functions the integral of the limit is not the limit of the
integrals. It is true that the functions in this example are discontinuous, but
that is not the issue. For example, if we replace the “boxes” fn = nχ

(0, 1
n

]

with “triangles” that have height n and base [0, 1
n ] (similar to the Shrinking

Triangles of Example 3.4.1 except with height n instead of height 1), then fn

converges pointwise to the zero function yet
∫ 1

0
fn = 1

2 for every n. ♦

Although Example 4.2.6 shows that pointwise convergence of functions
need not imply convergence of the corresponding integrals, the next theorem
gives a weaker but still very useful inequality that relates limn→∞

∫
E

fn to∫
E

f when each function fn is nonnegative. In fact, for this result we do not
even need to assume that the functions fn converge pointwise or that their
integrals converge. Even without convergence, we obtain an inequality stated
in terms of liminfs instead of limits.

Theorem 4.2.7 (Fatou’s Lemma). If {fn}n∈N is a sequence of nonnega-
tive measurable functions on a measurable set E ⊆ Rd, then

∫

E

(
lim inf
n→∞

fn

)
≤ lim inf

n→∞

∫

E

fn. (4.11)

In particular, if fn(x) → f(x) for each x ∈ E, then

∫

E

f ≤ lim inf
n→∞

∫

E

fn. (4.12)

Proof. Define

f(x) = lim inf
n→∞

fn(x) = lim
k→∞

inf
n≥k

fn(x) = lim
k→∞

gk(x)

where
gk(x) = inf

n≥k
fn(x).
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The functions gk increase monotonically to f, i.e., gk ր f. The Monotone
Convergence Theorem therefore implies that

∫

E

f = lim
k→∞

∫

E

gk.

However, gk ≤ fk and therefore
∫

gk ≤
∫

fk for every k. Consequently,

∫

E

f = lim
k→∞

∫

E

gk = lim inf
k→∞

∫

E

gk ≤ lim inf
k→∞

∫

E

fk.

This proves equation (4.11). Equation (4.12) follows by recalling that if the
limit of a sequence exists, then it equals the liminf of the sequence. ⊓⊔

Problems

4.2.8. Assume Fatou’s Lemma and deduce the Monotone Convergence The-
orem from it.

4.2.9. Let fn : E → [0,∞] be measurable functions defined on a measurable
set E ⊆ Rd. Suppose that fn → f pointwise and fn ≤ f for each n ∈ N.
Show that

∫
E

fn →
∫

E
f as n → ∞ (note that

∫
E

f might be ∞).

4.2.10. Assume E ⊆ Rd and f : E → [0,∞] are measurable, and
∫

E
f < ∞.

Prove that
∑∞

n=1

∣∣{f ≥ n}
∣∣ < ∞.

4.2.11. Assume E ⊆ Rd and f : E → [0,∞] are measurable, and
∫

E
f < ∞.

Given ε > 0, prove that there exists a measurable set A ⊆ E such that
|A| < ∞ and

∫
A

f ≥
∫

E
f − ε.

4.2.12. Let E ⊆ Rd and f : E → [0,∞] be measurable and suppose that∫
E

f(x)n dx =
∫

E
f(x) dx < ∞ for every positive integer n. Prove that there

is a measurable set A ⊆ E such that f = χA a.e.

4.2.13. Let E be a measurable subset of Rd, and let {fn}n∈N be a sequence of
nonnegative measurable functions on E such that fn → f a.e. Suppose that
limn→∞

∫
E

fn =
∫

E
f and

∫
E

f < ∞. Prove that limn→∞

∫
A

fn =
∫

A
f for

every measurable set A ⊆ E. Show by example that this can fail if
∫

E
f = ∞.

4.2.14. Let f be a continuous, nonnegative function on the interval [a, b].
Prove that the Riemann integral of f on [a, b] coincides with its Lebesgue

integral
∫ b

a
f(x) dx.

4.2.15. Let E be a measurable subset of Rd, and suppose that fn and f are
nonnegative measurable functions on E such that fn ց f pointwise. Prove
that if

∫
E

fk < ∞ for some k, then
∫

E
fn →

∫
E

f as n → ∞. Show by example
that the assumption that some fk has finite integral is necessary.
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4.2.16. Let E be a measurable subset of Rd such that |E| < ∞, and let f
be a nonnegative, bounded function on E. Prove that f is measurable if and
only if

sup

{∫

E

φ : 0 ≤ φ ≤ f, φ simple

}
= inf

{∫

E

ψ : f ≤ ψ, ψ simple

}
.

4.2.17. Let f : E → [0,∞] be a nonnegative, measurable function defined
on a measurable set E ⊆ Rd. This problem will quantify the idea that the
integral of f equals “the area of the region under its graph.”

(a) The graph of f is

Γf =
{
(x, f(x)) : x ∈ E, f(x) < ∞

}
.

Show that |Γf | = 0.

(b) The region under the graph of f is the set Rf that consists of all points
(x, y) ∈ Rd+1 = Rd × R such that x ∈ E and y satisfies

{
0 ≤ y ≤ f(x), if f(x) < ∞,

0 ≤ y < ∞, if f(x) = ∞.

Show that Rf is a measurable subset of Rd+1, and its Lebesgue measure is

|Rf | =

∫

E

f(x) dx.

4.2.18. (a) Prove Fatou’s Lemma for series: If akn ≥ 0 for every k, n ∈ N,
then

∞∑

k=1

lim inf
n→∞

akn ≤ lim inf
n→∞

∞∑

k=1

akn.

Show by example that strict inequality can hold.

(b) Formulate and prove a Monotone Convergence Theorem for series.

4.3 The Lebesgue Integral of Measurable Functions

In the preceding section we defined the integral of nonnegative measurable
functions. Now we will consider functions that can take extended real values
or complex values.
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4.3.1 Extended Real-Valued Functions

We begin with extended real-valued functions. A generic measurable, ex-
tended real-valued function f can take both positive and negative values,
so to define its integral we split f into its positive and negative parts
f+(x) = max

{
f(x), 0

}
and f−(x) = max

{
−f(x), 0

}
. Since f+ and f− are

nonnegative and measurable, they each have well-defined Lebesgue integrals.
Furthermore, f = f+ − f−, so we will declare the integral of f to be the

difference of
∫

E
f+ and

∫
E

f−. However, we must be careful to exclude any

cases that would assign an indeterminate form to the integral.

Definition 4.3.1 (Lebesgue Integral of an Extended Real-Valued
Function). Let f : E → [−∞,∞] be a measurable extended real-valued
function defined on a measurable set E ⊆ Rd. The Lebesgue integral of f over
E is ∫

E

f =

∫

E

f+ −
∫

E

f−,

as long as this does not have the form ∞−∞ (in that case, the integral is
undefined). ♦

Here is an example of a function whose Lebesgue integral does not exist.

Fig. 4.2 Graph of sinc(x) = sin x
x

for x ≥ 0.

Exercise 4.3.2. The (unnormalized) sinc function is

sinc(x) =
sin x

x
, x 6= 0.

This function is continuous on R if we set sinc(0) = 1 (see the illustration in
Figure 4.2). Prove that the Lebesgue integrals of the positive and negative
parts of the sinc function over [0,∞) are both infinite, i.e.,

∫ ∞

0

sinc+(x) dx = ∞ =

∫ ∞

0

sinc−(x) dx.
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Conclude that the Lebesgue integral of sinc on E = [0,∞) does not exist.
Even so, Problem 4.6.19 will show that the improper Riemann integral of the
sinc function over [0,∞) does exist, and it has the value

lim
a→∞

∫ a

0

sinx

x
dx =

π

2
. ♦

The next lemma gives a simple but useful inequality that relates the in-
tegral of f to the integral of |f |. Note that since |f | is nonnegative and
measurable, its Lebesgue integral always exists (in the extended real sense),
even if the integral of f is undefined.

Lemma 4.3.3. Let f : E → [−∞,∞] be a measurable function defined on a
measurable set E ⊆ Rd.

(a) If
∫

E
f exists, then

0 ≤
∣∣∣∣
∫

E

f

∣∣∣∣ ≤
∫

E

|f | ≤ ∞.

(b)
∫

E
f exists and is finite if and only if

∫
E
|f | < ∞.

Proof. Each of the three functions f+, f−, and |f | = f++f− are nonnegative
and measurable, so their integrals are well-defined nonnegative extended real
numbers. Further, 0 ≤ f+, f− ≤ |f |, so

0 ≤
∫

E

f− ≤
∫

E

|f | ≤ ∞ and 0 ≤
∫

E

f+ ≤
∫

E

|f | ≤ ∞.

(a) Assume that the integral of f exists. Then, by definition, one or both
of

∫
E

f+ and
∫

E
f− must be finite. Therefore

0 ≤
∣∣∣∣
∫

E

f

∣∣∣∣ =

∣∣∣∣
∫

E

f+ −
∫

E

f−

∣∣∣∣ ≤
∫

E

f+ +

∫

E

f− =

∫

E

|f | ≤ ∞.

(b) Since
∫

E
f+ and

∫
E

f− are nonnegative,

∫

E

f exists and is finite ⇐⇒
∫

E

f+,

∫

E

f− < ∞

⇐⇒
∫

E

f+ +

∫

E

f− < ∞

⇐⇒
∫

E

|f | < ∞. ⊓⊔

Looking ahead to Definition 4.4.1, a function that satisfies
∫

E
|f | < ∞ is

said to be integrable on E.
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4.3.2 Complex-Valued Functions

Now we turn to the complex-valued setting. We define the integral of a
complex-valued function by breaking it into real and imaginary parts.

Definition 4.3.4 (Lebesgue Integral of a Complex-Valued Function).
Let f : E → C be a measurable complex-valued function defined on a mea-
surable set E ⊆ Rd. Write f in real and imaginary parts as f = fr + ifi,

where fr and fi are real-valued. If
∫

E
fr and

∫
E

fi both exist and are finite,

then the Lebesgue integral of f over E is

∫

E

f =

∫

E

fr + i

∫

E

fi.

Otherwise, the integral is undefined. ♦

While the integral of an extended real-valued function can be ±∞, the
integral of a complex-valued function is always a complex scalar (if it exists).

Now we derive an analogue of Lemma 4.3.3 for complex-valued functions.

Lemma 4.3.5. Let f : E → C be a measurable function defined on a mea-
surable set E ⊆ Rd. Then

∫

E

f exists ⇐⇒
∫

E

|f | < ∞. (4.13)

Further, in this case we have

0 ≤
∣∣∣∣
∫

E

f

∣∣∣∣ ≤
∫

E

|f | < ∞. (4.14)

Proof. First note that since |f | is nonnegative,
∫

E
|f | exists as a nonnegative,

extended real number (although it could be ∞). Write f = fr + ifi, where
fr and fi are real-valued.

Suppose that
∫

E
f exists. Then Definition 4.3.4 requires that

∫
E

fr and∫
E

fi both be finite real numbers. Consequently, Lemma 4.3.3 implies that∫
E
|fr| and

∫
E
|fi| are finite. Therefore

∫

E

|f | =

∫

E

|fr + ifi| ≤
∫

E

(
|fr| + |fi|

)
=

∫

E

|fr| +

∫

E

|fi| < ∞.

Conversely, if
∫

E
|f | is finite, then both

∫
E
|fr| and

∫
E
|fi| must be finite,

and therefore
∫

E
f is defined. This establishes equation (4.13).

To prove equation (4.14), assume that
∫

E
|f | < ∞. Then z =

∫
E

f exists
and is a complex number. Let α be a complex number with |α| = 1 such that
αz = |z| (if z 6= 0 then α is uniquely determined, while otherwise α can be
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any complex number with unit modulus). That is, |α| = 1 and

∣∣∣∣
∫

E

f

∣∣∣∣ = α

∫

E

f.

Now write αf (not f !) in real and imaginary parts, i.e., αf = g + ih where g
and h are real-valued. Assuming that

∫
E

αf = α
∫

E
f (the formal justification

is assigned below as part of Exercise 4.3.6), we compute that

∣∣∣∣
∫

E

f

∣∣∣∣ = α

∫

E

f =

∫

E

αf =

∫

E

g + i

∫

E

h.

Since
∣∣∫

E
f
∣∣ is a real number, we must have

∫
E

h = 0 (though we cannot infer
from this that h is zero). As g is real-valued, we apply Lemma 4.3.3 to obtain

∣∣∣∣
∫

E

f

∣∣∣∣ =

∫

E

g ≤
∫

E

|g| ≤
∫

E

|f |,

the final inequality following from the fact that g is the real part of αf, and
therefore |g| ≤ |αf | = |f |. ⊓⊔

4.3.3 Properties of the Integral

The following exercise gives some properties of the integrals of extended real-
valued or complex-valued functions. In the statement of this exercise, when
we write a condition like “f ≤ g a.e.” we implicitly assume that f and g are
extended real-valued functions. However, a hypothesis such as “f = 0 a.e.”
can be satisfied by either an extended real-valued or a complex-valued func-
tion.

Exercise 4.3.6. Let E ⊆ Rd be measurable, and assume that f, g : E → F
are measurable. Prove the following statements.

(a) If
∫

E
f and

∫
E

g both exist and f ≤ g a.e., then
∫

E
f ≤

∫
E

g.

(b) If
∫

E
f and

∫
E

g both exist and f = g a.e., then
∫

E
f =

∫
E

g.

(c) If
∫

E
f exists and A is a measurable subset of E, then

∫
A

f exists.

(d) If f = 0 a.e. on E, then
∫

E
f exists and

∫
E

f = 0.

(e) If
∫

E
f exists and c is a scalar, then

∫
E

cf exists and
∫

E
cf = c

∫
E

f.

(f) If
∫

E
f exists and A1, A2, . . . are disjoint measurable subsets of E, then

∫

∪An

f =
∞∑

n=1

∫

An

f.
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(g) If
∫

E
f exists and A1 ⊆ A2 ⊆ · · · are nested measurable subsets of E,

then ∫

∪An

f = lim
n→∞

∫

An

f. ♦

In particular, statement (b) of the preceding exercise shows that changing
the value of a function on a set of zero measure does not change the value of its
integral. Consequently, many of our earlier theorems that required hypotheses
to hold at all points are still valid if we assume only that the hypotheses
hold almost everywhere. Here is such a version of the Monotone Convergence
Theorem.

Theorem 4.3.7 (Monotone Convergence Theorem). Assume that E is
a measurable subset of Rd. If functions fn : E → [−∞,∞] are measurable,
fn ≥ 0 a.e., and fn(x) ր f(x) for a.e. x ∈ E, then

lim
n→∞

∫

E

fn =

∫

E

f.

Proof. Let Z be the set of all points x where either some fn(x) is negative
or fn(x) does not converge to f(x). For x /∈ Z set gn(x) = fn(x) and g(x) =
f(x), and let gn(x) = g(x) = 0 for all x ∈ Z. Then the set Z has measure
zero, gn ≥ 0 everywhere, and gn ր g, so the Monotone Convergence Theorem
implies that ∫

E

fn =

∫

E

gn ր
∫

E

g =

∫

E

f. ⊓⊔

An entirely similar approach establishes the following extension of Fatou’s
Lemma.

Theorem 4.3.8 (Fatou’s Lemma). Assume that E ⊆ Rd is measurable. If
functions fn : E → [−∞,∞] are measurable with fn ≥ 0 a.e., then

∫

E

(
lim inf
n→∞

fn

)
≤ lim inf

n→∞

∫

E

fn. ♦

Problems

4.3.9. Assume that f : Rd → F is measurable. Show that if
∫

Rd f exists, then

for each point a ∈ Rd we have

∫

Rd

f(x − a) dx =

∫

Rd

f(x) dx =

∫

Rd

f(a − x) dx.

4.3.10. Let L : Rd → Rd be an invertible linear transformation, let E ⊆ Rd

be a measurable set, and let f : E → F be a measurable function such that∫
E

f exists. Show that
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∫

E

f(x) dx = |det(L)|
∫

L−1(E)

f(Lx) dx.

4.4 Integrable Functions and L1(E)

We regularly encounter the quantity
∫

E
|f | and the condition

∫
E
|f | < ∞, so

we introduce the following terminology.

Definition 4.4.1 (L1-Norm and Integrable Functions). Let E ⊆ Rd be
a measurable set, and let f : E → F be a measurable function on E.

(a) The extended real number

‖f‖1 =

∫

E

|f |

is called the L1-norm of f on E (it could be infinite).

(b) We say that f is integrable on E if ‖f‖1 =
∫

E
|f | < ∞. ♦

Although we refer to ‖ · ‖1 as a “norm,” it is actually only a seminorm on
the space of integrable functions because ‖f‖1 = 0 if and only if f = 0 a.e.
(see Exercise 4.4.5).

We will study integrable functions and the L1-norm in this section. First,
we give some examples.

Example 4.4.2. (a) If f = 0 a.e., then ‖f‖1 =
∫

E
|f | = 0 by Exercise 4.3.6(d).

(b) If |E| < ∞ and f is bounded on E, then f is integrable. However, if
|E| = ∞, then the function that is identically 1 on E is bounded yet not
integrable.

(c) An unbounded function can be integrable, e.g., consider f(x) = x−1/2

on the interval [0, 1].

(d) An integrable function must be finite at almost every point of E
(why?). However, there are functions that are finite a.e. but not integrable
(for example, consider g(x) = x−1 on the interval [0, 1]).

(e) An integrable function need not decay to zero at ±∞. In fact, there
exist unbounded, continuous functions f : R → R that are integrable (see
Problem 4.4.16). ♦

4.4.1 The Lebesgue Space L1(E)

The Lebesgue space L∞(E) introduced in Definition 3.3.3 consists of the
essentially bounded functions on E. We similarly collect the integrable func-
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tions to form a space that we call L1(E). Technically, there are two ver-
sions of L1(E), one consisting of complex-valued functions and one consist-
ing of extended real-valued functions (which must be finite a.e., since they
are integrable). Both cases are important, and in practice it is usually clear
from context whether we are working with extended real-valued functions or
complex-valued functions. As usual, we combine the two possibilities into a
single definition by letting F denote either [−∞,∞] or C. Implicitly, the word
scalar denotes a real number c ∈ R if F = [−∞,∞], and a complex number
c ∈ C if F = C.

Definition 4.4.3 (The Lebesgue Space L1(E)). If E is a measurable sub-
set of Rd, then the Lebesgue space of integrable functions on E is

L1(E) =

{
f :E → F : f is measurable and ‖f‖1 =

∫

E

|f | < ∞
}

. ♦

Suppose that f and g are integrable functions on E and a and b are scalars.
Regardless of whether we are considering extended real-valued or complex-
valued functions, |af + bg| is an extended real-valued function. Therefore we
can apply Theorem 4.2.3 and compute that

∫

E

|af + bg| ≤
∫

E

(
|a||f | + |b||g|

)
= |a|

∫

E

|f | + |b|
∫

E

|g| < ∞. (4.15)

This shows that af + bg is integrable. Consequently L1(E) is closed under
the operations of addition of functions and multiplication of a function by a
scalar, so it is a vector space with respect to these operations.

Remark 4.4.4. In contrast, L1(E) need not be closed under products. For
example, if E = [0, 1] then f(x) = x−1/2 ∈ L1[0, 1], but the product of f
with itself is

f2(x) = f(x) f(x) =
1

x
6∈ L1[0, 1].

More generally, Problem 4.4.21 asks for a proof that L1(E) is never closed
under products (except in the trivial case that |E| = 0). On the other hand,
in Section 4.6.3 we will introduce a “multiplication-like” operation known as
convolution that is defined for functions on the domain Rd, and we will prove
that L1(Rd) is closed with respect to convolution. ♦

The following exercise shows that the L1-norm has properties similar to
those of the L∞-norm (see Exercise 3.3.4).

Exercise 4.4.5. Assume that E ⊆ Rd is measurable. Prove that the following
statements hold for all functions f, g ∈ L1(E) and all scalars c.

(a) Nonnegativity: 0 ≤ ‖f‖1 < ∞.

(b) Homogeneity: ‖cf‖1 = |c| ‖f‖1.
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(c) The Triangle Inequality: ‖f + g‖1 ≤ ‖f‖1 + ‖g‖1.

(d) Almost Everywhere Uniqueness: ‖f‖1 = 0 if and only if f = 0 a.e. ♦

Considering the definition of norms and seminorms from Section 1.2.2,
parts (a)–(c) of Exercise 4.4.5 tell us that ‖ · ‖1 is a seminorm on L1(E).
However, ‖ · ‖1 is not a norm because ‖f‖1 = 0 does not imply that f is
identically zero. Instead, ‖f‖1 = 0 implies that f is zero almost everywhere.
We will explore this issue in more depth in Chapter 7, where we discuss both
L1(E) and related spaces Lp(E) in detail.

4.4.2 Convergence in L1-Norm

The distance between two functions f and g with respect to the L1-norm is
‖f − g‖1. Once we have a notion of distance, we also have a corresponding
notion of convergence, made precise in the following definition.

Definition 4.4.6 (Convergence in L1-Norm). Let E be a measurable
subset of Rd. A sequence of integrable functions {fn}n∈N on E (either ex-
tended real-valued or complex-valued) is said to converge to f in L1-norm
if

lim
n→∞

‖f − fn‖1 = lim
n→∞

∫

E

|f − fn| = 0.

In this case we write fn → f in L1-norm. ♦

The following examples compare L1-norm convergence to pointwise a.e.
convergence.

Example 4.4.7. The domain for this example is E = [0, 1].

(a) The Shrinking Boxes fn = χ
[0, 1

n
] from Example 3.5.2 converge pointwise

a.e. to the zero function, and they also converge to the zero function in
L1-norm, because

‖0 − fn‖1 = ‖fn‖1 =

∫ 1

0

χ
[0, 1

n
] =

1

n
→ 0.

(b) The Shrinking Boxes fn = nχ
[0, 1

n
] from Example 4.2.6 converge pointwise

a.e. to the zero function, but they do not converge in L1-norm to the zero
function because for every n we have

‖0 − fn‖1 = ‖fn‖1 = n

∫ 1

0

χ
[0, 1

n
] = 1.

Hence pointwise a.e. convergence does not imply L1-norm convergence in
general.
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(c) Let {fn}n∈N be the sequence of Boxes Marching in Circles defined in
Example 3.5.5. The values of ‖fn‖1 for n = 1, . . . , 10 are

1,
1

2
,

1

2
,

1

3
,

1

3
,

1

3
,

1

4
,

1

4
,

1

4
,

1

4
.

Continuing this sequence, we see that the functions fn converge in L1-
norm to the zero function (slowly, to be sure, but they do converge).
However, fn does not converge pointwise a.e., so convergence in L1-norm
does not imply pointwise a.e. convergence. ♦

Although L1-norm convergence does not imply pointwise a.e. convergence,
we will use Tchebyshev’s Inequality to prove that L1-norm convergence im-
plies convergence in measure, and consequently there must exist a subsequence
that converges pointwise a.e.

Lemma 4.4.8. Let E ⊆ Rd be a measurable set, and let fn and f be integrable
functions on E. If fn → f in L1-norm, then:

(a) fn
m→ f, and

(b) there exists a subsequence {fnk
}k∈N such that fnk

→ f pointwise a.e.

Proof. If we fix any ε > 0, then Tchebyshev’s Inequality (Theorem 4.1.9)
implies that

lim
n→∞

∣∣{|f − fn| > ε}
∣∣ ≤ lim

n→∞

1

ε

∫

E

|f − fn| =
1

ε
lim

n→∞
‖f − fn‖1 = 0.

This shows that fn converges in measure to f. Consequently we can apply
Lemma 3.5.6, which states that any sequence that converges in measure has
a subsequence that converges pointwise a.e. ⊓⊔

In Figure 3.3, we showed some implications that hold between certain types
of convergence criteria. Figure 4.3 shows the implications that hold when we
also include the results of Lemma 4.4.8.

Sometimes we need to deal with families indexed by a real parameter. In
particular, if f ∈ L1(E) and we are given functions ft ∈ L1(E) for each t in
some interval (0, c), then we declare that ft → f in L1-norm as t → 0+ if for
every ε > 0 there exists a δ > 0 such that ‖f − ft‖1 < ε whenever 0 < t < δ.
The following lemma (essentially a restatement of Problem 1.1.23) deals with
L1-norm convergence in this context, and shows that convergence as t → 0+

can be reduced to consideration of sequences indexed by the natural numbers.

Lemma 4.4.9. Let E ⊆ Rd be measurable, and let ft, f ∈ L1(E) be given
for t in some interval (0, c), where c > 0. Then ft → f in L1-norm as t → 0+

if and only if ‖f − ftk
‖1 → 0 for every sequence of real numbers {tk}k∈N in

(0, c) that satisfy tk → 0. ♦
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pointwise a.e.
convergence

L1-norm
convergence

⇓ (if |E| < ∞) ⇓

L∞-norm
convergence

=⇒
almost uniform

convergence
=⇒

convergence
in measure

=⇒
pointwise a.e.
convergence of
a subsequence

⇓

pointwise a.e.
convergence

Fig. 4.3 Relations among certain convergence criteria (valid for sequences of functions

that are either complex-valued or extended real-valued but finite a.e.).

4.4.3 Linearity of the Integral for Integrable Functions

By Theorem 4.2.3,
∫

E
(f + g) =

∫
E

f +
∫

E
g for all nonnegative functions

f and g. We will enlarge the class of functions for which this conclusion
holds, but we must impose some restrictions in order to exclude indeterminate
forms. The following result achieves this by focusing on integrable functions.

Theorem 4.4.10 (Linearity of the Integral). Let E ⊆ Rd be a measurable
set. If f, g : E → F are integrable functions and a and b are scalars, then

∫

E

(af + bg) = a

∫

E

f + b

∫

E

g. (4.16)

Proof. Case 1: F = [−∞,∞]. Assume that f, g : E → [−∞,∞] are integrable
functions on E. By equation (4.15), their sum f + g is also integrable. Define
the measurable sets

E1 = {f ≥ 0, g ≥ 0},
E2 = {f ≥ 0, g < 0, f + g ≥ 0},
E3 = {f ≥ 0, g < 0, f + g < 0},

E4 = {f < 0, g ≥ 0, f + g ≥ 0},
E5 = {f < 0, g ≥ 0, f + g < 0},
E6 = {f < 0, g < 0}.

Consider the integral of f + g on the set E2. Since f + g and −g are each
nonnegative on E2, we compute that

∫

E2

(f + g) −
∫

E2

g =

∫

E2

(f + g) +

∫

E2

(−g) (by Exercise 4.3.6(e))

=

∫

E2

(f + g) + (−g) (by Theorem 4.2.3)

=

∫

E2

f.
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Since each integral is finite, we can rearrange to obtain

∫

E2

(f + g) =

∫

E2

f +

∫

E2

g.

A similar argument shows that equality holds for each of the other sets Ek.
Consequently, since E1, . . . , E6 partition E, we can use Exercise 4.3.6(f) to
compute that

∫

E

(f + g) =
6∑

k=1

∫

Ek

(f + g) =
6∑

k=1

(∫

Ek

f +

∫

Ek

g

)
=

∫

E

f +

∫

E

g.

Equation (4.16) therefore follows by combining this equality with the homo-
geneity property of the integral given in Exercise 4.3.6(e).

Case 2: F = C. This follows by splitting into real and imaginary parts and
applying Case 1. ⊓⊔

We will use the linearity of the integral to prove that if a sequence of func-
tions {fn}n∈N converges in L1-norm, then the integrals of the fn converge.

That is, if
∫

E
|f − fn| → 0, then we must have

∫
E

fn →
∫

E
f as well.

Lemma 4.4.11. Let E be a measurable subset of Rd. If fn, f : E → F are
integrable functions on E and fn → f in L1-norm, then

lim
n→∞

∫

E

fn =

∫

E

f.

Proof. Applying linearity and either Lemma 4.3.3 (for extended real-valued
functions) or Lemma 4.3.5 (for complex-valued functions), we see that

∣∣∣∣
∫

E

f −
∫

E

fn

∣∣∣∣ =

∣∣∣∣
∫

E

(f − fn)

∣∣∣∣ ≤
∫

E

|f − fn| = ‖f − fn‖1 → 0. ⊓⊔

4.4.4 Inclusions between L1(E) and L∞(E)

The L1-norm and the L∞-norm measure the distance between functions in
different ways. For example, consider the two functions f and g shown in
Figure 4.4. There is a set of positive measure (in fact, an interval centered at
x = 1) where |f(x)− g(x)| ≥ 3. Consequently, ‖f − g‖∞ ≥ 3, so as measured
by the L∞-norm, the distance between these two functions is large. However,
the integral of |f(x) − g(x)| is small (numerically, ‖f − g‖1 ≈ 0.3 for these
two functions). Hence f and g are close together, at least as measured by the
L1-norm. We take a closer look now at the relationship between ‖ · ‖1 and
‖ · ‖∞.
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Fig. 4.4 The distance between the function f (solid curve) and g (dashed curve) is small
when measured by the L1-norm, but large when measured by the L∞-norm.

An integrable function need not be essentially bounded. For example,
f(x) = x−1/2 is integrable even though it is unbounded on the interval [0, 1].
In fact, we will show that there exist unbounded integrable functions on any
domain that has positive measure.

Lemma 4.4.12. If E is a measurable subset of Rd and |E| > 0, then there
exists a function f ∈ L1(E)\L∞(E).

Proof. By Problem 2.3.20(a), there exists a measurable set A ⊆ E with
measure 0 < |A| < ∞. By part (c) of that same problem, there exist disjoint,
measurable subsets Ak of A such that |Ak| = 2−k |A| for each k ∈ N. The
function

f =

∞∑

k=1

2k/2χAk

is integrable on E, but it is not essentially bounded. ⊓⊔

In the converse direction, L∞(E) is not contained in L1(E) if E has infinite
measure, because the constant function 1 is bounded but not integrable when
|E| = ∞. On the other hand, the following lemma shows that L∞(E) is
contained in L1(E) whenever |E| < ∞. Moreover, convergence in L∞-norm
implies convergence in L1-norm in this case.

Lemma 4.4.13. If E is a measurable subset of Rd such that |E| < ∞, then
the following statements hold.

(a) If f : E → F is measurable, then ‖f‖1 ≤ |E| ‖f‖∞.
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(b) L∞(E) ⊆ L1(E), and if |E| > 0 then L∞(E) 6= L1(E).

(c) If fn, f ∈ L∞(E) and fn → f in L∞-norm, then fn → f in L1-norm.

Proof. (a) By definition of the essential supremum, we have |f | ≤ ‖f‖∞ a.e.
It therefore follows from Exercise 4.3.6(a) that

‖f‖1 =

∫

E

|f | ≤
∫

E

‖f‖∞ = |E| ‖f‖∞.

(b) If f ∈ L∞(E) then ‖f‖∞ < ∞, and therefore ‖f‖1 < ∞ by part (a).
This shows that L∞(E) is contained in L1(E), and Lemma 4.4.12 implies
that the inclusion is proper if E has positive measure.

(c) If ‖f − fn‖∞ → 0, then ‖f − fn‖1 → 0 by part (a). ⊓⊔

The following corollary of Lemma 4.4.13 follows immediately.

Corollary 4.4.14 (Uniform Convergence Theorem). Let E be a mea-
surable subset of Rd such that |E| < ∞. If fn, f : E → F are bounded, mea-
surable functions and fn → f uniformly, then fn → f in L1-norm, and
consequently

∫
E

fn →
∫

E
f. ♦

Problems

4.4.15. Determine all values of α, β ∈ R for which fα(x) = xα χ
[0,1](x) or

gβ(x) = xβ χ
[1,∞)(x) belong to L1(R).

4.4.16. Prove the following statements.

(a) There exists a function f ∈ C0(R) that is not integrable on R.

(b) There exists an unbounded continuous function that is integrable on R

(such a function cannot be monotonically increasing!).

(c) If f is uniformly continuous and integrable on R, then limx→∞ f(x)
exists and equals zero.

(d) If f is integrable on R and a = limx→∞ f(x) exists, then a = 0.

4.4.17. (a) Suppose that f, g : E → [−∞,∞] are measurable functions,
where E is a measurable subset of Rd. Prove that if f is integrable and
f ≤ g a.e., then g − f is measurable and

∫
E

(g − f) =
∫

E
g −

∫
E

f.

(b) Show that the Monotone Convergence Theorem and Fatou’s Lemma
remain valid if we replace the assumption fn ≥ 0 with fn ≥ g a.e., where g
is an integrable function on E. However, this can fail if g is not integrable.

4.4.18. Show by example that the hypothesis |E| < ∞ in Corollary 4.4.14 is
necessary, even if we explicitly require each fn to be integrable on E.
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4.4.19. Prove that if f ∈ L1(R) is differentiable at x = 0 and f(0) = 0, then∫ ∞

−∞
f(x)

x dx exists.

4.4.20. Prove that L1(Rd) is closed under invertible linear changes of vari-
able. That is, show that if L : Rd → Rd is an invertible linear transformation
and f ∈ L1(Rd), then f ◦ L ∈ L1(Rd).

4.4.21. Given a measurable set E ⊆ Rd, prove the following statements.

(a) If f ∈ L1(E) and g ∈ L∞(E), then fg ∈ L1(E).

(b) If |E| > 0, then L1(E) is not closed under products, i.e., there exist
functions f, g ∈ L1(E) such that fg /∈ L1(E).

(c) If f, g are measurable functions on E such that |f |2 and |g|2 each
belong to L1(E), then fg ∈ L1(E).

4.4.22. Suppose that f ∈ L1[a, b] satisfies
∫ x

a
f(t) dt = 0 for all x ∈ [a, b].

Prove that f = 0 a.e.
Remark: If we are allowed to appeal to later results, this follows easily

from the Lebesgue Differentiation Theorem (Theorem 5.5.7). The challenge
is to find a solution that uses only the tools that have been developed so far.

4.4.23. (a) Let E be a measurable subset of Rd, and assume that {fn}n∈N is
a sequence of integrable functions on E such that sup ‖fn‖1 < ∞ and fn → f
pointwise a.e. Prove that f ∈ L1(E) and

lim
n→∞

(∫

E

|fn| −
∫

E

|f − fn|
)

=

∫

E

|f |. (4.17)

Remark: This is sometimes referred to as the “missing term in Fatou’s
Lemma” [LL01] or “Lieb’s version of Fatou’s Lemma” [Str11].

(b) Exhibit integrable functions fn such that sup ‖fn‖1 = ∞ and fn → f
pointwise a.e., but equation (4.17) fails.

4.4.24. Let E be a measurable subset of Rd, and assume that fn and f are
integrable functions on E such that fn → f pointwise a.e. Prove that

lim
n→∞

‖f − fn‖1 = 0 ⇐⇒ lim
n→∞

‖fn‖1 = ‖f‖1.

4.5 The Dominated Convergence Theorem

Example 4.2.6 showed that pointwise convergence of functions need not imply
convergence of the integrals of those functions. The Monotone Convergence
Theorem tells us that if we have nonnegative functions fn that increase point-
wise to a function f, then the integral of fn will converge to the integral of f.
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However, this is a rather strong hypothesis that is not often satisfied in prac-
tice. In this section we will prove the Dominated Convergence Theorem, or
DCT, which gives a different sufficient condition that implies convergence of
the integrals of the fn. We will use the Dominated Convergence Theorem
to prove several results regarding approximation of integrable functions by
functions that have various special properties.

4.5.1 The Dominated Convergence Theorem

The Dominated Convergence Theorem states that if fn converges pointwise
almost everywhere to f and we can find a single, integrable function g that
simultaneously dominates every |fn|, then fn → f in L1-norm, and therefore∫

E
fn converges to

∫
E

f.

Theorem 4.5.1 (Dominated Convergence Theorem). Let {fn}n∈N be
a sequence of measurable functions (either extended real-valued or complex-
valued) defined on a measurable set E ⊆ Rd. If

(a) f(x) = limn→∞ fn(x) exists for a.e. x ∈ E, and

(b) there exists a single integrable function g such that for each n ∈ N we
have |fn(x)| ≤ g(x) a.e.,

then fn converges to f in L1-norm, i.e.,

lim
n→∞

‖f − fn‖1 = lim
n→∞

∫

E

|f − fn| = 0. (4.18)

As a consequence,

lim
n→∞

∫

E

fn =

∫

E

f. (4.19)

Proof. The hypotheses imply that g is integrable and nonnegative almost
everywhere. Therefore

0 ≤
∫

E

g =

∫

E

|g| < ∞.

Step 1. Suppose first that fn ≥ 0 a.e. for each n. In this case we can apply
Fatou’s Lemma to obtain

0 ≤
∫

E

f =

∫

E

lim inf
n→∞

fn ≤ lim inf
n→∞

∫

E

fn ≤
∫

E

g < ∞. (4.20)

We also have g−fn ≥ 0 a.e., so we can apply Fatou’s Lemma to the functions
g − fn. Doing this, we obtain
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∫

E

g −
∫

E

f =

∫

E

(g − f) (f and g are integrable)

=

∫

E

lim inf
n→∞

(g − fn) (since fn → f a.e.)

≤ lim inf
n→∞

∫

E

(g − fn) (Fatou’s Lemma)

= lim inf
n→∞

(∫

E

g −
∫

E

fn

)
(fn and g are integrable)

=

∫

E

g − lim sup
n→∞

∫

E

fn (properties of liminf).

All of the integrals that appear in the preceding calculation are finite, so
by rearranging we see that lim supn→∞

∫
E

fn ≤
∫

E
f. Combining this with

equation (4.20) yields

∫

E

f ≤ lim inf
n→∞

∫

E

fn ≤ lim sup
n→∞

∫

E

fn ≤
∫

E

f.

Hence limn→∞

∫
E

fn exists and equals
∫

E
f. This does not show that fn

converges to f in L1-norm, but we will establish that in Step 2.

Step 2. Now assume that the fn are arbitrary functions (either extended
real-valued or complex-valued) that satisfy hypotheses (a) and (b). In this
case, the functions |f − fn| are nonnegative a.e., converge pointwise a.e. to
the zero function, and satisfy

|f − fn| ≤ |f | + |fn| ≤ 2g a.e.

Since 2g is integrable, we can apply Step 1 to |f − fn|, which gives us

lim
n→∞

‖f − fn‖1 = lim
n→∞

∫

E

|f − fn| =

∫

E

0 = 0.

This proves that fn converges to f in L1-norm, so equation (4.18) holds.
Applying Lemma 4.4.11, it follows that the integral of fn converges to the
integral of f, so equation (4.19) holds as well. ⊓⊔

The reader should consider why the Shrinking Boxes of Example 4.2.6 do
not satisfy the hypotheses of the DCT, and contrast this with the Shrinking
Triangles of Example 3.4.1, which do.

The following special case of the DCT for domains with finite measure is
encountered often enough that it has its own name.

Corollary 4.5.2 (Bounded Convergence Theorem). Let E be a measur-
able subset of Rd such that |E| < ∞. If {fn}n∈N is a sequence of measurable
functions on E such that fn → f a.e. and there exists a single finite constant
M such that |fn| ≤ M a.e. for every n, then fn → f in L1-norm.



4.5 The Dominated Convergence Theorem 149

Proof. Since |E| < ∞, the constant function M is integrable. The result
therefore follows by applying the DCT with g(x) = M. ⊓⊔

Here is a sketch of an alternative proof of the Dominated Convergence
Theorem. The spirit of this proof is quite similar to that of the proof we gave
previously, but it is more concise and well worth working out.

Exercise 4.5.3. Assume that the hypotheses of the Dominated Convergence
Theorem are satisfied. Observe that 2g − |f − fn| ≥ 0 a.e. Write

2

∫

E

g =

∫

E

lim inf
n→∞

(
2g − |f − fn|

)
,

and apply Fatou’s Lemma. ♦

4.5.2 First Applications of the DCT

To illustrate the use of the DCT, we prove a simple but important fact about
approximation of integrable functions by functions that are zero outside of a
bounded set.

Lemma 4.5.4. Assume that E ⊆ Rd is measurable and f : E → F is inte-
grable. For each n ∈ N, set

fn(x) = f(x)χ
Bn(0)(x) =

{
f(x), if x ∈ E and ‖x‖ < n,

0, if x ∈ E and ‖x‖ ≥ n.

Then fn → f in L1-norm.

Proof. Note that fn → f pointwise and |fn| ≤ |f | for every n. Since |f | is
integrable, the DCT implies that ‖f − fn‖1 → 0. ⊓⊔

Part (a) of the next exercise applies the DCT in a similar but slightly dif-
ferent way to show that every integrable function can be well-approximated
in L1-norm by bounded functions. The result contained in part (b) of this
exercise is much more important than it may appear at first glance. In par-
ticular, we will make use of part (b) in the proofs of Theorem 6.3.1 and
Lemma 6.4.1.

Exercise 4.5.5. Let E ⊆ Rd be measurable, and assume that f : E → F is
integrable.

(a) Set En =
{
|f | ≤ n

}
, and show that f · χEn

converges to f in L1-norm,
i.e., ‖f − f · χEn

‖1 → 0 as n → ∞.
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(b) Given ε > 0, show that there exists a constant δ > 0 such that for every
measurable set A ⊆ E we have

|A| < δ =⇒
∫

A

|f | < ε. ♦ (4.21)

4.5.3 Approximation by Continuous Functions

Now we focus on functions whose domain is all of Rd. How well can we
approximate an arbitrary integrable function on Rd by a continuous function,
or perhaps by a compactly supported continuous function? That is, given an
integrable function f on Rd, can we find an element of

Cc(R
d) =

{
f ∈ C(Rd) : supp(f) is compact

}

that lies as close as we like to f, or is there a limit to how closely we can
approximate f? We measure “closeness” here in terms of the L1-norm, i.e.,
we wish to know if it is true that for every ε > 0 there exists a function
θ ∈ Cc(R

d) such that ‖f − θ‖1 < ε.
We will show that we can approximate an integrable function as closely as

we like by an element of Cc(R
d) when we measure error by the L1-norm. A key

tool in the proof is Urysohn’s Lemma, which gives us a way of constructing a
continuous function that “separates” disjoint closed sets. We give an exercise
regarding the distance from a point to a set in a metric space, and then prove
Urysohn’s Lemma.

Exercise 4.5.6. Let X be a metric space. Define the distance from a point
x ∈ X to a nonempty set A ⊆ X to be dist(x,A) = inf

{
d(x, y) : y ∈ A

}
,

where d(·, ·) is the metric on X. Prove the following statements.

(a) If A is closed, then x ∈ A if and only if dist(x,A) = 0.

(b) dist(x,A) ≤ d(x, y) + dist(y,A) for all x, y ∈ X.

(c) |dist(x,A) − dist(y,A)| ≤ d(x, y) for all x, y ∈ X.

(d) The function f(x) = dist(x,A) is uniformly continuous on X. ♦

Theorem 4.5.7 (Urysohn’s Lemma). If E and F are disjoint closed sub-
sets of a metric space X, then there exists a continuous function θ : X → R

such that 0 ≤ θ ≤ 1 on X, θ = 0 on E, and θ = 1 on F.

Proof. If E = ∅ then we just take θ = 1, and likewise if F = ∅ then we can
take θ = 0. Therefore we assume that E and F are both nonempty. Applying
Exercise 4.5.6, it follows that the function

θ(x) =
dist(x,E)

dist(x,E) + dist(x, F )
, for x ∈ X,

has the required properties. ⊓⊔
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Now we prove that we can approximate any integrable function by a con-
tinuous function that has compact support.

Theorem 4.5.8. If f ∈ L1(Rd) and ε > 0, then there exists a function
θ ∈ Cc(R

d) such that ‖f − θ‖1 < ε.

Proof. Step 1. First we consider a characteristic function f = χE , where
E is a bounded subset of Rd (we assume that E is bounded so that χE is
integrable). If we fix ε > 0, then Theorem 2.1.27 implies that there exists a
bounded open set U ⊇ E such that |U \E| < ε. By Problem 2.2.43, there
also exists a compact set K ⊆ E such that |E\K| < ε. Applying Urysohn’s
Lemma to the disjoint closed sets K and Rd\U, we can find a continuous
function θ : Rd → R that satisfies

• 0 ≤ θ ≤ 1 everywhere on Rd,

• θ = 1 on K, and

• θ = 0 on Rd\U.

This function θ belongs to Cc(R
d), and

‖χE − θ‖1 =

∫

Rd

|χE − θ| =

∫

U \K

|χE − θ| ≤ |U \K| < 2ε.

Hence χE can be approximated as closely as we like in L1-norm by an element
of Cc(R

d).

Step 2. Let φ be a simple function of the form

φ =
N∑

k=1

akχEk
,

where each set Ek is bounded and each scalar ak is nonzero. By Step 1, there
exist functions θk ∈ Cc(R

d) such that

∥∥χEk
− θk

∥∥
1

<
ε

|ak|N
, for k = 1, . . . , N.

Then the function θ =
∑N

k=1 akθk belongs to Cc(R
d), and by applying the

Triangle Inequality we see that

‖φ − θ‖1 =

∥∥∥∥
N∑

k=1

akχEk
−

N∑

k=1

akθk

∥∥∥∥
1

≤
N∑

k=1

|ak| ‖χEk
− θk‖1 < ε.

Step 3. Let f be an arbitrary element of L1(Rd). By Lemma 4.5.4, there
exists a function g that is zero outside of some bounded set and satisfies

‖f − g‖1 < ε.
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By Corollary 3.2.15, there exist simple functions φn that converge pointwise
to g and satisfy |φn| ≤ |g| a.e. Since g is integrable, the Dominated Con-
vergence Theorem implies that ‖g − φn‖1 → 0 as n → ∞. Therefore, if we
choose n large enough then we will have

‖g − φn‖1 < ε.

Applying Step 2, there exists a function θ ∈ Cc(R
d) such that

‖φn − θ‖1 < ε.

Therefore, by the Triangle Inequality,

‖f − θ‖1 ≤ ‖f − g‖1 + ‖g − φn‖1 + ‖φn − θ‖1 < 3ε. ⊓⊔

By taking ε = 1/n in Theorem 4.5.8, we see that if f is any integrable
function on Rd, then there exist functions θn ∈ Cc(R

d) such that

lim
n→∞

‖f − θn‖1 = 0.

That is, every function in L1(Rd) is an L1-norm limit of functions from
Cc(R

d). Using the terminology introduced in Section 1.1.2, this says that
Cc(R

d) is a dense subset of L1(Rd). This also shows that Cc(R
d) is not a

closed subset of L1(Rd) with respect to the L1-norm, because a sequence
of elements of Cc(R

d) can converge in L1-norm to a function that does not
belong to Cc(R

d).
An analogous situation is the set of rationals Q in the real line R. Every

real number can be written as a limit of rational numbers, so Q is a dense
subset of R, but Q is not closed because a limit of rational numbers can be
irrational. However, there is an interesting difference between Q and Cc(R

d).
While Q is a proper dense subset of R, it is not a dense subspace (because
it is not closed under multiplication by arbitrary real scalars). In contrast,
Cc(R

d) is a dense subspace of L1(Rd). Only an infinite-dimensional normed
space can contain a proper dense subspace, because proper subspaces of finite-
dimensional normed spaces are closed (for one proof of this, see [Heil11,
Thm. 1.22]).

The following important exercise is an application of Theorem 4.5.8. The
“easy” way to solve this is to first prove that equation (4.22) holds for func-
tions θ ∈ Cc(R

d), and then extend to arbitrary functions f ∈ L1(Rd) by
approximating by continuous functions (keep in mind that every function in
Cc(R

d) is compactly supported and therefore is uniformly continuous).

Exercise 4.5.9 (Strong Continuity of Translation). Given f ∈ L1(Rd),
let Taf(x) = f(x − a) denote the translation of f by a ∈ Rd. Prove that
Taf → f in L1-norm as a → 0, i.e.,

lim
a→0

‖Taf − f‖1 = 0. ♦ (4.22)
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We often summarize equation (4.22) by saying that translation is strongly
continuous on L1(Rd). In contrast, translation is not strongly continuous on
L∞(Rd). For example, if we set χ = χ

[0,1], then for every a 6= 0 we have
‖Taχ − χ‖∞ = 1 (see the illustration in Figure 7.6).

Remark 4.5.10. Exercise 4.5.9 does not imply that Taf → f pointwise or even
pointwise a.e. as a → 0. For example, if f = χE where E = [0, 1]\Q is the set
of irrationals in [0, 1] then there is no point x ∈ [0, 1] where Taf(x) → f(x)
as a → 0. ♦

4.5.4 Approximation by Really Simple Functions

Corollary 3.2.15 tells us that if f is a measurable function on a set E, then
there exist simple functions φn that converge pointwise to f and satisfy
|φn| ≤ |f | for every n. If it so happens that f is integrable, then we can
apply the Dominated Convergence Theorem and conclude that φn converges
to f in L1-norm as well as pointwise. Unfortunately, although a simple func-
tion takes only finitely many values, the sets on which those values are taken
can be arbitrary measurable sets. Sometimes we need to know that we can
approximate by actual “step functions,” i.e., functions that are finite lin-
ear combinations of characteristic functions of intervals. These functions are
sometimes called the really simple functions on R (for example, see the ter-
minology in [LL01, Sec. 1.17]). Here is the precise definition.

Definition 4.5.11 (Really Simple Function). A really simple function
on R is a measurable function φ of the form

φ =

N∑

k=1

ck χ
[ak,bk), (4.23)

where N ∈ N, ak < bk are real numbers, and ck is a scalar. ♦

We use half-open intervals [ak, bk) in Definition 4.5.11 for convenience.
Other types of finite intervals can usually be substituted if minor adjustments
are made to the proofs.

We saw in Theorem 4.5.8 that we can approximate an integrable function
by a continuous function. By approximating a continuous function with a
step function, we obtain the following result.

Theorem 4.5.12. If f ∈ L1(R), then for each ε > 0 there exists a really
simple function φ such that ‖f − φ‖1 < ε.

Proof. By Theorem 4.5.8, there exists some function θ ∈ Cc(R) such that
‖f − θ‖1 < ε/2. Since θ is compactly supported, we can choose R large
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enough that θ(x) = 0 for |x| ≥ R. Then, since θ is uniformly continuous,
there exists some 0 < δ < 1 such that

|x − y| < δ =⇒ |θ(x) − θ(y)| <
ε

4R + 4
.

The really simple function

φ(x) =
∑

k∈Z

θ(kδ)χ
[kδ,(k+1)δ)

is identically zero outside of [−R − 1, R + 1] and satisfies

|θ(x) − φ(x)| <
ε

4R + 4
, for x ∈ R.

Therefore

‖f − φ‖1 ≤ ‖f − θ‖1 + ‖θ − φ‖1

= ‖f − θ‖1 +

∫ R+1

−R−1

|θ(x) − φ(x)| dx

≤ ε

2
+ (2R + 2)

ε

4R + 4
= ε. ⊓⊔

Using the terminology of Section 1.1.2, Theorem 4.5.12 says that the set
of really simple functions is a dense subspace of L1(R).

4.5.5 Relation to the Riemann Integral

A measurable bounded function f on a finite interval [a, b] is necessarily

integrable, so its Lebesgue integral
∫ b

a
f(x) dx exists and is a finite scalar.

Some bounded functions on [a, b] are also Riemann integrable (for example,
this is true for all continuous functions). However, there are functions that
are Lebesgue integrable but not Riemann integrable. One example is the
Dirichlet function χ

Q, the characteristic function of the rational numbers.
Even though the Riemann integral of χ

Q does not exist, its Lebesgue integral

does; in fact,
∫ b

a
χ

Q = 0 since χ
Q = 0 a.e.

It is important to know whether these two types of integrals coincide when
they exist. For example, we need to know whether the formulas that we
learned in undergraduate calculus still hold if we replace Riemann integrals
by Lebesgue integrals. The following theorem shows if a bounded function is
Riemann integrable on a finite interval, then it is also Lebesgue integrable on
that interval and the two integrals coincide. Moreover, this theorem provides
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a complete characterization of the functions that are Riemann integrable—
they are precisely those functions that are continuous a.e.

Theorem 4.5.13. Let f : [a, b] → C be a bounded function whose domain is
a finite closed interval [a, b].

(a) If f is Riemann integrable on [a, b], then it is Lebesgue integrable on [a, b],

and its Riemann integral equals its Lebesgue integral
∫ b

a
f.

(b) f is Riemann integrable on [a, b] if and only if f is continuous at almost
every point of [a, b].

Proof. Since f is bounded, it is finite at every point. By considering the
real and imaginary parts of f separately, it suffices to consider real-valued
functions. Therefore we assume throughout this proof that f is real-valued.

We make some observations and lay out some notation before beginning
the main part of the proof. Given a partition

Γ = {a = x0 < x1 < · · · < xn = b},

set |Γ | = max{xj − xj−1} (this is called the mesh size of Γ ), and define

mj = inf
x∈[xj−1,xj ]

f(x) and Mj = sup
x∈[xj−1,xj ]

f(x),

for j = 1, . . . , n. The numbers

LΓ =

n∑

j=1

mj (xj − xj−1) and UΓ =

n∑

j=1

Mj (xj − xj−1),

are called lower and upper Riemann sums for f, respectively. Further,

φΓ =
n∑

j=1

mj χ
[xj−1,xj) and ψΓ =

n∑

j=1

Mj χ
[xj−1,xj),

are simple functions that satisfy

φΓ ≤ f ≤ ψΓ (4.24)

on the interval [a, b). By setting φΓ (b) = f(b) = ψΓ (b), we can assume that
φΓ and ψΓ are simple functions such that equation (4.24) holds on all of
[a, b]. Since φΓ and ψΓ are simple, their Lebesgue integrals are precisely

∫ b

a

φΓ = LΓ and

∫ b

a

ψΓ = UΓ .

For ease of notation, given a sequence of partitions {Γk}k∈N, we will use the
shorthands
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Lk = LΓk
, Uk = UΓk

, φk = φΓk
, ψk = ψΓk

.

Now we proceed to establish the validity of statements (a) and (b) of the
theorem.

(a) Assume that f is a real-valued Riemann integrable function, and let I
denote the value of the Riemann integral of f over [a, b]. Let {Γk}k∈N be any
sequence of partitions of [a, b] such that:

• Γk+1 is a refinement of Γk for each k ∈ N, and

• |Γk| → 0 as k → ∞, where |Γk| is the mesh size of the partition Γk.

Then it follows from the definition of the Riemann integral that Lk → I and
Uk → I as k → ∞.

We have not yet shown that f is measurable, so we do not yet know
whether its Lebesgue integral exists. However, since each partition Γk+1 is
a refinement of the preceding partition Γk, we do know that {φk}k∈N is a
monotone increasing sequence of simple functions, and similarly {ψk}k∈N is
a monotone decreasing sequence of simple functions. Therefore the functions

φ(x) = lim
k→∞

φk(x) and ψ(x) = lim
k→∞

ψk(x),

are measurable. Further, if we set M = supx∈[a,b] |f(x)|, then M is finite
and |φk|, |ψk| ≤ M for every k. Applying the Bounded Convergence Theorem
(Corollary 4.5.2), it follows that the Lebesgue integrals of φ and ψ satisfy

∫ b

a

φ = lim
k→∞

∫ b

a

φk = lim
k→∞

Lk = I = lim
k→∞

Uk = lim
k→∞

∫ b

a

ψk =

∫ b

a

ψ.

Therefore, the Lebesgue integral of ψ−φ is
∫ b

a
(ψ−φ) = 0. Since ψ−φ ≥ 0, it

follows that ψ−φ = 0 a.e. But φ ≤ f ≤ ψ, so this implies that φ = f = ψ a.e.

Consequently, f is measurable and its Lebesgue integral is
∫ b

a
f = I.

(b) Suppose that f is real-valued and Riemann integrable on [a, b]. Using
the same partitions and notation from part (a), let E be the set of all points
x ∈ [a, b] such that φ(x) = f(x) = ψ(x). The proof of part (a) shows that
Z = [a, b]\E has measure zero. Since each partition Γk contains finitely
many partitioning points, the set S that contains every partitioning point of
every Γk is countable and therefore also has measure zero. Suppose that f is
discontinuous at a point x /∈ Z ∪ S. Then there exists some ε > 0 such that
for every δ > 0 there is a point t ∈ (x − δ, x + δ) such that |f(x) − f(t)| ≥ ε.
It follows from this that

ψk(x) − φk(x) ≥ ε for every k ∈ N.

However, since x ∈ E, this implies that

ε ≤ lim
k→∞

(
ψk(x) − φk(x)

)
= ψ(x) − φ(x) = 0,
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which is a contradiction. Therefore f must be continuous at every point
x /∈ Z ∪ S, so f is continuous a.e.

For the converse, suppose that f is continuous a.e. Let {Γk}k∈N be any
sequence of partitions of [a, b] such that |Γk| → 0. We are no longer assum-
ing that Γk+1 is a refinement of Γk, so the sequence {φk}k∈N need not be
monotone increasing, and {ψk}k∈N need not be monotone decreasing. On the
other hand, the fact that f is continuous almost everywhere implies that
φk(x) → f(x) at each point of continuity of f (compare Exercise 3.2.9). Thus
φk → f a.e., and similarly ψk → f a.e. It therefore follows from the Bounded
Convergence Theorem that

lim
k→∞

Lk = lim
k→∞

∫ b

a

φk =

∫ b

a

f = lim
k→∞

∫ b

a

ψk = lim
k→∞

Uk,

where the integrals on the preceding line are all Lebesgue integrals. This tells
us that the upper and lower Riemann sums for f converge to the number∫ b

a
f. Since we have shown that this is true for every sequence of partitions

whose mesh size converges to zero, we conclude that f is Riemann integrable

and its Riemann integral is
∫ b

a
f. ⊓⊔

As we have noted before, the two statements “f is continuous a.e.” and
“f equals a continuous function a.e.” are distinct. The first means that
limy→x f(y) = f(x) for almost every x, while the second means that there
exists a continuous function g such that f(x) = g(x) for almost every x. For
example, the characteristic function χ

Q equals a continuous function a.e. but
it is not continuous at any point, while χ

[0,1] is continuous a.e. on R but there
is no continuous function that equals it almost everywhere.

Remark 4.5.14. Somewhat more care is required when dealing with improper
Riemann integrals. For example, Problem 4.6.19 shows that the improper
Riemann integral of f(x) = sin x

x over [0,∞) exists and has the value π
2 .

However, the integrals of the positive and negative parts of f are
∫ ∞

0
f+ = ∞

and
∫ ∞

0
f− = ∞, so f is not integrable on [0,∞) and the Lebesgue integral

of f on [0,∞) does not even exist (see Exercise 4.3.2). In essence, improper
Riemann integrals may exist because of “fortunate cancellations,” while the
existence of the Lebesgue integral requires “absolute convergence.” ♦

Problems

4.5.15. Evaluate the following limits.

(a) lim
n→∞

∫ 2

1

n2 sin(x/n)

1 + nx2
dx. (b) lim

n→∞

∫ ∞

0

sin xn

xn
dx.
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4.5.16. Let f be an integrable function on a measurable set E ⊆ Rd. Prove
the following statements.

(a) f = 0 a.e. if and only if
∫

A
f = 0 for every measurable set A ⊆ E.

(b) If ε > 0, then there is a measurable set A ⊆ E such that f is bounded
on A and

∫
E\A

|f | < ε.

4.5.17. Show that if f ∈ L1(R), then its indefinite integral F (x) =
∫ x

0
f(t) dt

is uniformly continuous on R.

4.5.18. Prove the Dominated Convergence Theorem for Series: If scalars
akn ∈ C are such that limn→∞ akn = bk exists for each k and

∞∑

k=1

(
sup
n∈N

|akn|
)

< ∞,

then

lim
n→∞

∞∑

k=1

|bk − akn| = 0 and lim
n→∞

∞∑

k=1

akn =

∞∑

k=1

bk.

4.5.19. Assume that f is a nonnegative function on [a, b], and f is bounded
and Riemann integrable on [a+δ, b] for each δ > 0. Let Iδ denote the Riemann
integral of f on [a + δ, b], and suppose that I = limδ→0 Iδ exists and is finite.

Prove that f is integrable on [a, b] and I equals the Lebesgue integral
∫ b

a
f.

4.5.20. Show by example that the hypothesis |E| < ∞ is necessary in the
Bounded Convergence Theorem (Corollary 4.5.2), even if we explicitly require
each function fn to be integrable on E.

4.5.21. Use Egorov’s Theorem to prove the Bounded Convergence Theorem.

4.5.22. Show that the conclusion of the Dominated Convergence Theorem
continues to hold if we replace the hypothesis fn → f a.e. with fn

m→ f.

4.5.23. Let f : E → [0,∞] be an integrable function defined on a measurable
set E ⊆ Rd, and suppose that I =

∫
E

f > 0. Given 0 ≤ t ≤ I, prove that
there exists a measurable set A ⊆ E such that

∫
A

f = t. Does anything
change if f : E → [−∞,∞] is integrable?

4.5.24. Let E be a measurable subset of Rd, and suppose that f is integrable
and nonnegative on E. Prove that

lim
n→∞

∫

E

n ln

(
1 +

f(x)

n

)
dx =

∫

E

f(x) dx.
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4.5.25. Assume K ⊂ Rd is compact, and let g(x) = max{1 − dist(x,K), 0}.
Prove that

lim
n→∞

∫

Rd

g(x)n dx = |K|.

4.5.26. Let E be a measurable subset of Rd such that |E| < ∞. Prove that
limh→0 |E ∩ (E + h)| = |E|.

4.5.27. This problem will establish a Generalized Dominated Convergence
Theorem. Let E be a measurable subset of Rd. Assume that:

(a) fn, gn, f, g ∈ L1(E),

(b) fn → f pointwise a.e.,

(c) gn → g pointwise a.e.,

(d) |fn| ≤ gn a.e., and

(e)
∫

E
gn →

∫
g.

Prove that
∫

E
fn →

∫
E

f and ‖f − fn‖1 → 0.

4.5.28. Compute lim
n→∞

∫ ∞

0

(
1 + x

n

)−n
sin x

n dx.

4.5.29. Suppose that f is a bounded, measurable function on [0, 1] such that∫ 1

0
xnf(x) dx = 0 for n = 0, 1, 2, . . . . Show that f(x) = 0 a.e.

4.5.30. Prove the following continuous-parameter version of the DCT. Let
E be a measurable subset of Rd, and fix c > 0. Assume that:

(a) ft is a measurable function on E for each real number t ∈ (0, c),

(b) ft → f pointwise a.e. as t → 0+, and

(c) there exists a single function g ∈ L1(E) such that |ft| ≤ g a.e. for each
t ∈ (0, c).

Prove that limt→0+ ‖f − ft‖1 = 0.

4.5.31. (a) Given f ∈ L1(R), define

F (ω) =

∫ ∞

−∞

f(x) sin ωx dx, ω ∈ R.

Prove that F is continuous at ω = 0, and if
∫ ∞

−∞
|xf(x)| dx < ∞ then F is

differentiable at ω = 0.

(b) Given f ∈ L1(R), define

G(ω) =

∫ ∞

−∞

f(x)
sin ωx

x
dx, ω ∈ R.

Prove that G is differentiable at ω = 0.

(c) Show that parts (a) and (b) remain valid if ω is any point in R.
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4.5.32. Assume that f : [0, 1]2 → C satisfies the following two conditions:

(i) for each fixed x ∈ [0, 1], f(x, y) is an integrable function of y, and

(ii) ∂f
∂x (x, y) exists at all points and is bounded on [0, 1]2.

Prove that ∂f
∂x (x, y) is a measurable function of y for each x ∈ [0, 1], and

d

dx

∫ 1

0

f(x, y) dy =

∫ 1

0

∂f

∂x
(x, y) dy.

4.5.33. Let X be a set, and let Σ be a σ-algebra of subsets of X (see Def-
inition 2.2.14). A function ν : Σ → [−∞,∞] is a signed measure on (X,Σ)
if: ν(∅) = 0, ν(E) takes at most one of the values ∞ and −∞, and ν is
countably additive, i.e., if E1, E2, . . . are countably many disjoint sets in Σ,
then

ν

(⋃
k

Ek

)
=

∑

k

ν(Ek).

We say that ν is a positive measure if ν(E) ≥ 0 for every E ∈ Σ.

(a) Let P(Rd) be the set of all subsets of Rd. Counting measure on
(Rd,P(Rd)) is the function µ : P(Rd) → [0,∞] defined by

µ(E) =

{
#E, if E is finite,

∞, if E is infinite,

where #E is the number of elements of E. Prove that µ is a positive measure
on (Rd,P(Rd)).

(b) The δ measure or Dirac measure on (Rd,P(Rd)) is the function
δ : P(Rd) → [0,∞] defined by

δ(E) =

{
1, if 0 ∈ E,

0, if 0 /∈ E.

Prove that δ is a positive measure on (Rd,P(Rd)).

(c) Let L be the set of all Lebesgue measurable subsets of Rd, and let
f : Rd → [−∞,∞] be a measurable function such that at least one of

∫
f+

or
∫

f− is finite. For each measurable set E ⊆ Rd, define νf (E) =
∫

E
f(t) dt.

Prove that νf is a signed measure on (Rd,L).

(d) We say that a signed measure ν on (Rd,L) is absolutely continuous
with respect to Lebesgue measure if for each measurable set A ⊆ Rd we have

|A| = 0 =⇒ ν(A) = 0.

Restricting µ and δ to the σ-algebra L, determine whether the measures µ,
δ, and νf are absolutely continuous with respect to Lebesgue measure.
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4.6 Repeated Integration

Let E ⊆ Rm and F ⊆ Rn be measurable sets. If f is a measurable function
on E × F then there are at least three natural integrals of f over E × F
whose existence we can consider. First, there is the integral of f over the set
E×F ⊆ Rm+n with respect to Lebesgue measure on Rm+n. We will formally
write this as the double integral

∫∫

E×F

f =

∫∫

E×F

f(x, y) (dx dy).

This double integral is simply the Lebesgue integral of f on E×F. The double
integral may or may not actually exist, but it is one possible way that we can
attempt to integrate f.

A second possibility is to perform an iterated integration where for each
fixed y we integrate f(x, y) as a function of x, and then integrate the result
in y. This gives us the iterated integral

∫

F

(∫

E

f(x, y) dx

)
dy.

Again, this iterated integral may or may not exist.
The third possibility is the iterated integral performed in the opposite

order, which is ∫

E

(∫

F

f(x, y) dy

)
dx.

In general the three integrals given above need not be equal (for some
specific examples, see Problems 4.6.12–4.6.14). Our goal in this section is to
derive the theorems of Fubini and Tonelli, which give sufficient conditions
under which these three integrals all exist and are equal.

4.6.1 Fubini’s Theorem

We begin by giving the statement of Fubini’s Theorem. According to this
result, the double integral and the two iterated integrals are all equal if f is
an integrable function on the Cartesian product E × F.

Theorem 4.6.1 (Fubini’s Theorem). Let E be a measurable subset of Rm

and let F be a measurable subset of Rn. If f : E × F → F is integrable on
E × F, then the following statements hold.

(a) fx(y) = f(x, y) is measurable and integrable on F for almost every x ∈ E.

(b) fy(x) = f(x, y) is measurable and integrable on E for almost every y ∈ F.
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(c) g(x) =
∫

F
fx(y) dy is measurable and integrable on E.

(d) h(y) =
∫

E
fy(x) dx is measurable and integrable on F.

(e) The following three integrals exist and are finite (i.e., they are real or
complex scalars), and they are equal as indicated:

∫∫

E×F

f(x, y) (dx dy) =

∫

F

(∫

E

f(x, y) dx

)
dy

=

∫

E

(∫

F

f(x, y) dy

)
dx. ♦

Before beginning the proof of Fubini’s Theorem, we point out that state-
ments (a) and (b) of the theorem are not trivial. If f is measurable on E ×F
and we fix x ∈ E, then fx(y) = f(x, y) need not be a measurable function
on F ! For example, let Z be a subset of R that has measure zero and let N
be a nonmeasurable subset of R. Then Z × N has measure zero as a subset
of R2, so

f(x, y) = χZ×N (x, y) = χZ(x)χN (y), (x, y) ∈ R2,

is a measurable function on R2. However, if we fix a point x ∈ Z, then

fx(y) = χZ(x)χN (y) = χN (y), y ∈ R,

is not measurable on R. To prove Fubini’s Theorem, we will have to show that
if f is measurable on E × F then the restriction fx is measurable on F for
almost every x, and the restriction fy is measurable on E for almost every y.
We must be careful not to try to integrate fx or fy before we have verified
that they are measurable.

The idea of the proof of Fubini’s Theorem is to proceed from characteristic
functions to simple functions to arbitrary integrable functions. We will make
this procedure explicit through a series of lemmas. Because we can split
a complex-valued function into real and imaginary parts, it will suffice to
consider extended real-valued functions. To further simplify the presentation,
we will first establish Fubini’s Theorem for the case E = Rm and F = Rn,
and afterward discuss the (easy) extension to arbitrary Cartesian product
domains E × F.

To begin the proof, let F denote the set of all extended real-valued, inte-
grable functions on Rm+n that satisfy statements (a)–(e) in Fubini’s Theorem
for E = Rm and F = Rn:

F =
{
f :Rm+n → [−∞,∞] : f is integrable and (a)–(e) hold

}
.

Our ultimate goal is to show that every integrable function on Rm+n belongs
to F . As a first step, we show that certain characteristic functions belong
to F .



4.6 Repeated Integration 163

Lemma 4.6.2. If A ⊆ Rm and B ⊆ Rn are measurable and |A|, |B| < ∞,
then χA×B ∈ F .

Proof. Let f = χE where E = A×B. Fix any point y ∈ Rm, and consider the
function of x defined by fy(x) = f(x, y). Because E is a Cartesian product,

fy(x) = χA×B(x, y) = χA(x)χB(y).

Thus, when we hold y fixed, fy is simply the constant χB(y) times the char-
acteristic function χA:

fy = χB(y)χA.

Since χA is measurable and integrable, we conclude that fy is measurable
and integrable for every y.

Since fy is a measurable and integrable function of x, its integral exists.
In fact, if we let h(y) denote this integral, then

h(y) =

∫

Rm

fy(x) dx = χB(y)

∫

Rm

χA(x) dx = |A| χB(y).

Thus h is simply a constant multiple of χB , so h is both measurable and
integrable. Further, since f = χA×B and |A×B| = |A| |B|, we compute that

∫

Rn

(∫

Rm

f(x, y) dx

)
dy =

∫

Rn

|A| χB(y) dy

= |A| |B| =

∫∫

Rm+n

f(x, y) (dx dy).

Combining this with a symmetric calculation for the other iterated integral,
it follows that f ∈ F . ⊓⊔

If Q is a box in Rm+n then we can write Q = Q1 × Q2 where Q1 is a box
in Rm and Q2 is a box in Rn. Therefore, a corollary of Lemma 4.6.2 is that
χQ ∈ F for every box Q contained in Rm+n.

Before proceeding to characteristic functions of more general types of sets,
we will consider some properties of the collection F . One immediate fact is
that F is closed under addition and scalar multiplication. This is because lin-
ear combinations of measurable functions are measurable, and the Lebesgue
integral is linear when applied to integrable functions (see Theorem 4.4.10).
We state this formally as a lemma.

Lemma 4.6.3. F is closed under finite linear combinations, and hence is a
subspace of L1(Rm+n). ♦

Next, by applying the Monotone Convergence Theorem, we will show that
F is closed under monotone limits of nonnegative functions.

Lemma 4.6.4. Assume that 0 ≤ fk ∈ F for k ∈ N, and let f be an integrable
function on Rm+n.
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(a) If fk ր f, then f ∈ F .

(b) If fk ց f, then f ∈ F .

Proof. (a) Assume that fk ր f. By the definition of the family F , the func-
tion fy

k is integrable for almost every y. Further, the function

hk(y) =

∫

Rm

fy
k (x) dx, y ∈ Rn,

is defined a.e., and it is measurable and integrable.
Let Zk be the set of y such that fy

k is not integrable. Then Z =
S∞

k=1Zk

has measure zero, and if y /∈ Z then fy
k is measurable for every k. Since

fy
k ր fy, it follows that fy is measurable. Thus fy is measurable for almost

every y.
If y /∈ Z then fy is both measurable and nonnegative, so its integral exists

and is nonnegative (though it might be infinite). Therefore we can define

h(y) =

∫

Rm

fy(x) dx, for y /∈ Z.

We do not yet know that h is measurable. However, if y /∈ Z then the mea-
surable functions fy

k increase to the measurable function fy, so the Monotone
Convergence Theorem implies that

0 ≤ hk(y) =

∫

Rm

fy
k (x) dx ր

∫

Rm

fy(x) dx = h(y).

Thus hk(y) → h(y) for a.e. y. Since each hk is measurable and the pointwise
a.e. limit of measurable functions is measurable, we conclude that h is mea-
surable. Further, h is nonnegative, so its integral exists in the extended real
sense.

Now we apply the Monotone Convergence Theorem again, this time to the
measurable functions hk. Since hk ր h, we have

0 ≤
∫

Rn

hk(y) dy ր
∫

Rn

h(y) dy.

At this point, we do not know whether the integral of h is finite. However,
using the definition of F and applying the Monotone Convergence Theorem
yet again, we see that

∫

Rn

(∫

Rm

f(x, y) dx

)
dy =

∫

Rn

h(y) dy (definition of h)

= lim
k→∞

∫

Rn

hk(y) dy (MCT on Rn)
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= lim
k→∞

∫

Rn

(∫

Rm

fy
k (x) dx

)
dy (definition of hk)

= lim
k→∞

∫∫

Rm+n

fk(x, y) (dx dy) (since fk ∈ F)

=

∫∫

Rm+n

f(x, y) (dx dy) (MCT on Rm+n)

< ∞.

Hence h is integrable. This implies that h(y) =
∫

fy is finite a.e., and therefore
fy is integrable for a.e. y. Finally, the calculation above shows that

∫

Rn

(∫

Rm

f(x, y) dx

)
dy =

∫∫

Rm+n

f(x, y) (dx dy).

A symmetric argument applies to the other iterated integral, so we conclude
that f ∈ F .

(b) Assume that fk ց f, and set gk = f1 − fk and g = f1 − f. Then
gk ∈ F since F is closed under linear combinations. Further, g is integrable
and 0 ≤ gk ր g, so part (a) implies that g ∈ F . Therefore f = f1 − g ∈ F as
well. ⊓⊔

Now we return to the task of showing that F contains every characteristic
function χA with A ⊆ Rm+n and |A| < ∞. So far, we know that χQ ∈ F
when Q is a box in Rm+n. Since every open set is a countable union of
nonoverlapping boxes, we expect that we should be able to show that χU ∈ F
for any bounded open set U (we assume boundedness so that χU is inte-
grable). Unfortunately, although we can write U =

S

Qk where the boxes Qk

are nonoverlapping, we have that

χU 6=
∞∑

k=1

χQk

because the Qk are not disjoint. This means that we cannot simply combine
our previous lemmas to get the conclusion that χU belongs to F . We can find
disjoint sets Ak ⊆ Qk such that χU =

∑
χAk

, but the Ak are not boxes, and
hence we do not yet know whether χAk

belongs to F . These problems make
the proof of our next lemma longer than we might have expected.

Lemma 4.6.5. If U is a bounded open subset of Rm+n, then χU ∈ F .

Proof. Step 1. We will show that χZ ∈ F for any set Z that is contained in
the boundary of a box Q in Rm+n.

Since Q is a box in Rm+n, we can write it as

Q =

m+n∏

k=1

[ak, bk] = R × S,
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where R is a box in Rm and S is a box in Rn. If

(x, y) = (x1, . . . , xm, xm+1, . . . , xm+n) ∈ ∂Q,

then there must be some k such that xk equals either ak or bk. If 1 ≤ k ≤ m,
then this says that x ∈ ∂R, while if m+1 ≤ k ≤ m+n then we have y ∈ ∂S.

Fig. 4.5 Illustration for d = 2. Let Q = R×S where R, S are closed intervals. If (x, y) ∈ ∂Q

and y /∈ ∂S, then x ∈ ∂R.

Fix any set Z ⊆ ∂Q. Suppose that y /∈ ∂S and χy
Z(x) = 1. Then (x, y) ∈

Z ⊆ ∂Q, but since y /∈ ∂S we must have x ∈ ∂R (see the illustration in
Figure 4.5). Since ∂R has measure zero, we conclude that

y /∈ ∂S =⇒ χy
Z = 0 a.e.

Hence χy
Z is measurable and integrable except possibly for those y that belong

to the measure-zero set ∂S. Further, for a.e. y (those not in ∂S) we have

h(y) =

∫

Rm

χy
Z(x) dx = 0.

Thus h = 0 a.e. Hence h is measurable and integrable, and

∫

Rn

(∫

Rm

χZ(x, y) dx

)
dy =

∫

Rn

h(y) dy = 0 =

∫∫

Rm+n

χZ(x, y) (dx dy),

where the last equality follows from the fact that χZ = 0 a.e. on Rm+n.
Combining this with a symmetric calculation for the other iterated integral,
we conclude that χZ ∈ F .

Step 2. Let U be any bounded open subset of Rm+n. By Lemma 2.1.5,
we can write U as the union of countably many nonoverlapping boxes Qk

contained in Rm+n. “Disjointize” these boxes by setting

A1 = Q1, A2 = Q2 \ Q1, A3 = Q3 \ (Q1 ∪ Q2),

and so forth. The sets Ak are measurable and disjoint, and their union is U.
Further, Zk = Qk\Ak ⊆ ∂Qk, so χZk

∈ F by Step 1. Since we also have
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χQk
∈ F , it follows that χAk

= χQk
− χZk

∈ F . Consequently,

φN =

N∑

k=1

χAk
∈ F , for all N ∈ N.

Since 0 ≤ φN ր χU and χU is integrable, we can apply Lemma 4.6.4 and
conclude that χU ∈ F . ⊓⊔

If H is a bounded Gδ-set, then we can write H =
T

Uk where {Uk}k∈N is a
nested decreasing sequence of open sets. Noting that χUk

ց χH and applying
Lemma 4.6.4, it follows that χH ∈ F . Since every bounded measurable set
A ⊆ Rm+n can be written as A = H \Z where |Z| = 0, we are near to proving
that χA ∈ F for arbitrary bounded measurable sets A.

Lemma 4.6.6. (a) If Z ⊆ Rm+n and |Z| = 0, then χZ ∈ F .

(b) If A is any bounded measurable subset of Rm+n, then χA ∈ F .

Proof. (a) If Z ⊆ Rm+n has zero measure, then there exists a Gδ-set H
that contains Z and has the same measure as Z. As we remarked before the
statement of the lemma, the results we have established so far imply that
χH ∈ F . Therefore

∫

Rn

(∫

Rm

χy
H(x) dx

)
dy =

∫∫

Rm+n

χH(x, y) (dx dy) = |H| = |Z| = 0.

The integrands on the preceding line are nonnegative, so this implies that

h(y) =

∫

Rm

χy
H(x) dx = 0 for a.e. y.

Consequently, for a.e. y we have χy
H = 0 a.e., and since Z ⊆ H, it follows

that
for a.e. y, χy

Z = 0 a.e.

Therefore χy
Z is measurable and integrable for a.e. y. Further, h = 0 a.e., so h

is measurable and integrable, and

∫

Rn

(∫

Rm

χZ(x, y) dx

)
dy =

∫

Rn

h(y) dy = 0 =

∫∫

Rm+n

χZ(x, y) (dx dy).

Combining this with a symmetric calculation for the other iterated integral,
we conclude that χZ ∈ F .

(b) If A is bounded and measurable, then A = H \Z where H is a bounded
Gδ-set and |Z| = 0. By replacing Z with H ∩Z, we may assume that Z ⊆ H.
Hence χA = χH − χZ . But χH and χZ both belong to F and we know that
F is closed under finite linear combinations, so χA ∈ F . ⊓⊔
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By combining the preceding lemmas we will obtain the proof of Fubini’s
Theorem for extended real-valued functions whose domain is Rm+n.

Theorem 4.6.7. If f is an integrable extended real-valued function on Rm+n,
then f ∈ F .

Proof. Assume first that f is nonnegative, and let φk be nonnegative simple
functions such that φk ր f. Let Qk = [−k, k]m+n, and define

ψk = φk · χQk
.

Each ψk is a compactly supported simple function, and ψk ր f. A compactly
supported simple function is a finite linear combination of characteristic func-
tions of bounded sets, so by combining Lemma 4.6.6 with the fact that F
is closed under linear combinations, we see that ψk ∈ F . Consequently, by
applying Lemma 4.6.4 we obtain f ∈ F .

Now let f be an arbitrary integrable extended real-valued function. Then
we can write f = f+ − f− where f+ and f− are both nonnegative. Since
f+ and f− are integrable, they belong to F . Hence f ∈ F since F is closed
under finite linear combinations. ⊓⊔

Thus, we have shown that Fubini’s Theorem holds for integrable ex-
tended real-valued functions whose domain is Rm+n. By splitting a complex-
valued function into its real and imaginary parts, the corresponding result
for complex-valued functions on Rm+n also follows.

The final step is to extend to functions whose domain is E × F instead of
Rm × Rn. This is easy, for if f is defined on E × F then we can extend the
domain of f to Rm+n by setting f = 0 outside of E × F. Applying Fubini’s
Theorem for functions on Rm+n and recalling that f vanishes outside of E×F,
we see that all of statements (a)–(e) in Fubini’s Theorem hold for f on the
domain E × F. This completes the proof of Theorem 4.6.1.

4.6.2 Tonelli’s Theorem

Our next result, which is known as Tonelli’s Theorem, is complementary to
Fubini’s Theorem. It states that the interchange in the order of integration is
allowed if f is a nonnegative function. In this case all of the integrals involved
are nonnegative, although they might be infinite.

Theorem 4.6.8 (Tonelli’s Theorem). Let E be a measurable subset of Rm

and let F be a measurable subset of Rn. If f : E × F → [0,∞] is measurable,
then the following statements hold.

(a) fx(y) = f(x, y) is a measurable function on F for almost every x ∈ E.

(b) fy(x) = f(x, y) is a measurable function on E for almost every y ∈ F.
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(c) g(x) =
∫

F
fx(y) dy is a measurable function on E.

(d) h(y) =
∫

E
fy(x) dx is a measurable function on F.

(e) The following three integrals exist as nonnegative extended real numbers,
and are equal as indicated:

∫∫

E×F

f(x, y) (dx dy) =

∫

F

(∫

E

f(x, y) dx

)
dy (4.25)

=

∫

E

(∫

F

f(x, y) dy

)
dx. (4.26)

Proof. The idea of the proof is that we create an integrable approximation fk

to f to which we can apply Fubini’s Theorem, and then use the Monotone
Convergence Theorem to move to the limit.

Let f be any nonnegative measurable function on E × F. For each k ∈ N,
set Qk = [−k, k]m+n, and for x ∈ E × F define

fk(x) =





k, if x ∈ Qk and f(x) > k,

f(x), if x ∈ Qk and 0 ≤ f(x) ≤ k,

0, otherwise.

Each fk is integrable and nonnegative, and fk ր f.
By Fubini’s Theorem, fy

k is measurable and integrable for a.e. y. Since
fy

k ր fy, it follows that fy is measurable for a.e. y. It also follows from
Fubini’s Theorem that the function

hk(y) =

∫

E

fk(x, y) dx

is measurable and integrable. Since fy is nonnegative, its integral exists (al-
though the integral could be infinite). Further, by the Monotone Convergence
Theorem, for a.e. y we have that

hk(y) =

∫

E

fk(x, y) dx ր
∫

E

f(x, y) dx = h(y).

Hence h is defined a.e. and is measurable. Applying the Monotone Conver-
gence Theorem again, we see that

∫

F

(∫

E

f(x, y) dx

)
dy =

∫

F

h(y) dy (definition of h)

= lim
k→∞

∫

F

hk(y) dy (MCT on F )

= lim
k→∞

∫

F

(∫

E

fy
k (x) dx

)
dy (definition of hk)
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= lim
k→∞

∫∫

E×F

fk(x, y) (dx dy) (Fubini)

=

∫∫

E×F

f(x, y) (dx dy) (MCT on E × F ).

The quantities above may be infinite, but they are equal as indicated. This
establishes the equality given in equation (4.25). The proof of the equality in
equation (4.26) follows similarly, by interchanging the roles of x and y. ⊓⊔

One of the most common uses of Tonelli’s Theorem is to determine if
Fubini’s Theorem is applicable. In order to apply Fubini’s Theorem, we need
to know that the function f is integrable on E × F. To do this, we have
to compute the integral of |f | on E × F. Since |f | is nonnegative, Tonelli’s
Theorem tells us that we can prove that f is integrable by showing that any
one of three possible integrals is finite. Hence we can choose whichever one of
these three integrals is simplest to evaluate, and just verify that one integral
is finite. Here is the precise formulation.

Corollary 4.6.9. Let E be a measurable subset of Rm and let F be a mea-
surable subset of Rn. If f : E × F → F is a measurable function on E × F,
then, as extended real numbers,

∫∫

E×F

|f(x, y)| (dx dy) =

∫

F

(∫

E

|f(x, y)| dx

)
dy =

∫

E

(∫

F

|f(x, y)| dy

)
dx.

Consequently, if any one of these three integrals is finite, then f ∈ L1(E×F )
and
∫∫

E×F

f(x, y) (dx dy) =

∫

F

(∫

E

f(x, y) dx

)
dy =

∫

E

(∫

F

f(x, y) dy

)
dx. ♦

Fubini’s Theorem and Tonelli’s Theorem can be adapted to domains that
are not Cartesian products. Given a function f on a measurable set A ⊆
Rm+n, the simplest way to apply Fubini or Tonelli is to extend f by zero.
The following lemma illustrates this technique.

Lemma 4.6.10. If F is a nonnegative or integrable function on the domain
D =

{
(x, y) ∈ [0,∞)2 : y ≤ x

}
, then

∫ ∞

0

∫ x

0

F (x, y) dy dx =

∫ ∞

0

∫ ∞

y

F (x, y) dx dy.

Proof. Extend F to all of [0,∞)2 by setting F (x, y) = 0 for (x, y) /∈ D.
Applying Tonelli’s Theorem or Fubini’s Theorem (as appropriate), we see
that

∫ ∞

0

∫ x

0

F (x, y) dy dx =

∫ ∞

0

∫ ∞

0

F (x, y)χD(x, y) dy dx
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=

∫ ∞

0

∫ ∞

0

F (x, y)χD(x, y) dx dy

=

∫ ∞

0

∫ ∞

y

F (x, y) dx dy. ⊓⊔

4.6.3 Convolution

To give an application of Fubini’s Theorem and Tonelli’s Theorem, we intro-
duce the operation of convolution and prove that L1(Rd) is closed under this
operation.

If f and g belong to L1(Rd), then we formally define their convolution to
be the function f ∗ g given by

(f ∗ g)(x) =

∫

Rd

f(y) g(x − y) dy. (4.27)

This is a “formal” definition because at this point we do not know whether
the integral in the definition of (f ∗ g)(x) exists.

It may not be obvious at this point why we would want to define f ∗ g
by equation (4.27), or why this would lead to a useful operation. However,
convolution is in fact a natural operation that arises in a wide variety of cir-
cumstances. To give a familiar example of a discrete version of a convolution,
consider the product of two polynomials

p(x) = a0 + a1x + · · · + amxm and q(x) = b0 + b1x + · · · + bnxn.

If we set ak = 0 for k > m and k < 0 and bk = 0 for k > n and k < 0, then
the product of p and q is p(x)q(x) = c0 + c1x + · · · + cm+nxm+n, where

ck =
k∑

j=0

aj bk−j , for k = 0, . . . ,m + n.

The sequence of coefficients (ck) of the polynomial pq is a discrete convolution
of the sequence (ak) with the sequence (bk).

In this section we will give one particular sufficient condition on f and g
that implies that f ∗ g exists. Specifically, we will use Fubini’s Theorem to
show that (f ∗ g)(x) is defined for a.e. x when f and g are both integrable.
To apply Fubini’s Theorem, we need a function of two variables, and this is

F (x, y) = f(y) g(x − y).

To see why F is measurable, first consider G(x, y) = f(x) for (x, y) ∈ R2d.
This is measurable on R2d because
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{G > a} = {f > a} × Rd.

Similarly g(y) is measurable as a function of x and y, and therefore the
product H(x, y) = f(x) g(y) is measurable on R2d. Since F = H ◦ L,
where L : R2d → R2d is the linear function L(x, y) = (y, x − y), and since
measurability is preserved under linear changes of variable, it follows that
F (x, y) = H(y, x − y) is measurable.

Now we show that F is integrable on R2d. To do this, we use Tonelli’s
Theorem, which allows us to choose the most convenient iterated integral to
evaluate. We choose to compute

∫∫
|F | as follows:

∫∫

R2d

|F (x, y)| (dx dy) =

∫

Rd

(∫

Rd

|f(y)| |g(x − y)| dx

)
dy (Tonelli)

=

∫

Rd

(∫

Rd

|g(x − y)| dx

)
|f(y)| dy

=

∫

Rd

‖g‖1 |f(y)| dy (by Problem 4.3.9)

= ‖g‖1 ‖f‖1 < ∞. (4.28)

Therefore F is integrable. Consequently Fubini’s Theorem implies that
Fx(y) = f(y) g(x − y) is a measurable and integrable function of y for al-
most every x, and

(f ∗ g)(x) =

∫

Rd

Fx(y) dy

exists for almost every x and is an integrable function of x.
In summary, by using the theorems of Tonelli and Fubini, we have shown

that if f and g are integrable on Rd, then f ∗ g is defined at almost every
point and is integrable on Rd. Thus

f, g ∈ L1(Rd) =⇒ f ∗ g ∈ L1(Rd),

so L1(Rd) is closed under convolution. Furthermore, by using equation (4.28)
we obtain a relationship between the norms of f, g, and f ∗ g:

‖f ∗ g‖1 =

∫

Rd

|(f ∗ g)(x)| dx

=

∫

Rd

∣∣∣∣
∫

Rd

f(y) g(x − y) dy

∣∣∣∣ dx

≤
∫

Rd

∫

Rd

|f(y) g(x − y)| dy dx

=

∫∫

R2d

|F (x, y)| (dx dy) = ‖f‖1 ‖g‖1.
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We state these results formally as a theorem (which is itself a special case
of Young’s Inequality, see Theorem 9.1.14).

Theorem 4.6.11. If f, g ∈ L1(Rd), then f ∗ g ∈ L1(Rd) and

‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1. ♦ (4.29)

We often summarize equation (4.29) by saying that convolution is sub-
multiplicative with respect to the L1-norm. Some further properties of con-
volution are given in Problems 4.6.25–4.6.27, and we will return to study
convolution in more detail in Section 9.1.

Problems

Q1

Q2

Q3

0 1

1

Fig. 4.6 Boxes Q1, Q2, . . . for Problem 4.6.12.

4.6.12. Let Q = [0, 1]2, and let Q1, Q2, . . . be an infinite sequence of nonover-
lapping squares centered on the main diagonal of Q, as shown in Figure 4.6.
Subdivide each square Qn into four equal subsquares, and let f = 1/|Qn| on
the lower left and upper right subsquares of Qn, and f = −1/|Qn| on the
lower right and upper left subsquares. Set f = 0 everywhere else. Prove that

∫ 1

0

(∫ 1

0

f(x, y) dx

)
dy =

∫ 1

0

(∫ 1

0

f(x, y) dy

)
dx = 0,

but
∫∫

Q
|f(x, y)| (dx dy) = ∞. Use this to show that

∫∫
Q

f(x, y) (dx dy), the
Lebesgue integral of f on Q, is undefined.

4.6.13. Consider the two iterated integrals
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I1 =

∫ 1

−1

∫ 1

−1

x

1 − y2
dx dy, I2 =

∫ 1

−1

∫ 1

−1

x

1 − y2
dy dx.

Prove that I1 exists, but I2 is undefined. Note that x
1−y2 is continuous but

unbounded on (−1, 1)2.

4.6.14. Use the fact that d
dy

y

x2+y2
= x2−y2

(x2+y2)2
to prove that the following

iterated integrals have the indicated values:

∫ ∞

1

(∫ ∞

1

x2 − y2

(x2 + y2)2
dy

)
dx = −π

4
,

∫ ∞

1

(∫ ∞

1

x2 − y2

(x2 + y2)2
dx

)
dy =

π

4
,

∫ ∞

1

(∫ ∞

1

∣∣∣∣
x2 − y2

(x2 + y2)2

∣∣∣∣ dx

)
dy = ∞.

Note that x2−y2

(x2+y2)2 is both continuous and bounded on [1,∞)2.

4.6.15. Given f ∈ L1(R), define g(x) =
∫ x

−∞
f(t) dt for x ∈ R. Prove that if

we fix c ∈ R, then g(x + c) − g(x) is an integrable function of x and

∫ ∞

−∞

(
g(x + c) − g(x)

)
dx = c

∫ ∞

−∞

f(t) dt.

4.6.16. Let E ⊆ Rm and F ⊆ Rn be measurable sets, and assume that
f : E × F → F is measurable. Define fx(y) = f(x, y), and prove that the
following two statements are equivalent.

(a) f = 0 a.e. on E × F.

(b) For almost every x ∈ E we have fx(y) = 0 for a.e. y ∈ F.

4.6.17. Use Tonelli’s Theorem to give another solution to Problem 4.2.17.

4.6.18. Define f : (0,∞)2 → R by f(x, y) = x e−x2(1+y2). Compute the two
iterated integrals of f (one with respect to dx dy and one with respect to
dy dx), and use Fubini’s Theorem to show that

∫ ∞

0

e−t2 dt =

√
π

2
.

4.6.19. Use Fubini’s Theorem and the substitution
∫ ∞

0
e−tx dt = 1

x to evalu-

ate the integral
∫ a

0
sin x

x dx. Then apply the Dominated Convergence Theorem

to show that lima→∞

∫ a

0
sin x

x dx = π
2 .

Remark: Thus, even though sin x
x is not integrable on the infinite interval

[0,∞), the improper Riemann integral
∫ ∞

0
sin x

x dx exists and equals π
2 .
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4.6.20. Given f ∈ L1[0, 1], define

g(x) =

∫ 1

x

f(t)

t
dt, 0 < x ≤ 1.

Show that g is defined a.e. on [0, 1], g ∈ L1[0, 1], and
∫ 1

0
g(x) dx =

∫ 1

0
f(x) dx.

4.6.21. Assume that E ⊆ Rd is measurable. The distribution function of a
measurable function f : E → F is

ω(t) =
∣∣{|f | > t}

∣∣, t ≥ 0.

By definition, ω is a nonnegative extended real-valued function. Prove the
following facts about ω.

(a) ω is monotone decreasing on [0,∞).

(b) ω is right-continuous, i.e., lims→t+ ω(s) = ω(t) for each t ≥ 0.

(c) If f is integrable, then lims→t− ω(s) = |{|f | ≥ t}|.
(d)

∫ ∞

0
ω(t) dt =

∫
E
|f(x)| dx.

(e) f is integrable if and only if ω is integrable.

(f) If f is integrable, then limn→∞ nω(n) = 0 = limn→∞
1
n ω

(
1
n

)
.

4.6.22. Prove Fubini’s Theorem for series: If cmn is a real or complex number
for each m, n ∈ N and

∞∑

m=1

∞∑

n=1

|cmn| < ∞,

then the following series converge and are equal as indicated:

∞∑

m=1

∞∑

n=1

cmn =
∞∑

n=1

∞∑

m=1

cmn.

4.6.23. Prove Tonelli’s Theorem for series: If cmn ≥ 0 for m, n ∈ N, then

∞∑

m=1

∞∑

n=1

cmn =

∞∑

n=1

∞∑

m=1

cmn,

in the sense that either both sides converge and are equal, or both sides are
infinite.

4.6.24. Prove the following mixed integral/series version of Fubini’s Theo-
rem: If fn : E → F is measurable for each n ∈ N, where E ⊆ Rd is measurable,
and if

∞∑

n=1

∫

E

|fn(t)| dt < ∞,
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then the series
∑∞

n=1 fn(t) converges for a.e. t, and the following series and
integrals exist and are equal as indicated:

∫

E

∞∑

n=1

fn(t) dt =

∞∑

n=1

∫

E

fn(t) dt.

(For an integral/series version of Tonelli’s Theorem, see Corollary 4.2.4.)

4.6.25. Let f(x) = e−|x|, g(x) = e−x2

, and h(x) = xe−x2

. Compute f ∗ f,
g ∗ g, and h ∗ h.

4.6.26. Prove that the following statements hold for all f, g, h ∈ L1(R).

(a) Convolution is commutative: f ∗ g = g ∗ f a.e.

(b) Convolution is associative: (f ∗ g) ∗ h = f ∗ (g ∗ h) a.e.

(c) Convolution distributes over addition: f ∗ (ag + bh) = af ∗ g + bf ∗ h
a.e. for all scalars a and b.

(d) Convolution commutes with translation: f ∗ (Tag) = (Taf) ∗ g =
Ta(f ∗ g) a.e. for all a ∈ R.

4.6.27. Given f ∈ L1(R) and g ∈ L∞(R), prove the following statements.

(a) The integral defining (f ∗ g)(x) exists for every x ∈ R.

(b) f ∗ g is continuous on R.

(c) f ∗ g is bounded on R, and ‖f ∗ g‖∞ ≤ ‖f‖1 ‖g‖∞.

4.6.28. (a) Show that if f, g ∈ Cc(R), then f ∗ g ∈ Cc(R) and

supp(f ∗ g) ⊆ supp(f) + supp(g) =
{
x + y : x ∈ supp(f), y ∈ supp(g)

}
.

Conclude that Cc(R) is closed under convolution.

(b) Is C1
c (R) closed under convolution?

4.6.29. Let E be a measurable subset of R such that 0 < |E| < ∞.

(a) Prove that the convolution χE ∗ χ−E is continuous.

(b) Prove the Steinhaus Theorem: The set E − E = {x − y : x, y ∈ E}
contains an open interval centered at the origin (compare this proof to the
one that appears in Theorem 2.4.3).

(c) Show that limt→0 |E ∩ (E + t)| = |E| and limt→±∞ |E ∩ (E + t)| = 0.

4.6.30. (a) Prove that if f ∈ L1(R) and g ∈ C0(R), then f ∗ g ∈ C0(R).

(b) Given f ∈ L1(R), evaluate lim
n→∞

∫ ∞

−∞

f(x − n)
x

1 + |x| dx.



Chapter 5

Differentiation

In this chapter and the next, we will take a closer look at some of the fun-
damental properties of functions, especially those whose domain is a finite
closed interval [a, b]. The interplay between differentiation and integration
will be a recurring theme throughout Chapters 5 and 6.

An important issue that motivates much of our work is the Fundamental
Theorem of Calculus (which we often refer to by the acronym FTC ). We
know from undergraduate real analysis that if a function f is differentiable
at every point in a closed finite interval [a, b] and if f ′ is continuous on [a, b],
then the Fundamental Theorem of Calculus holds, and it tells us that

∫ x

a

f ′(t) dt = f(x) − f(a), for all x ∈ [a, b]. (5.1)

Since we assumed that f ′ is continuous, the integral on the line above exists
as a Riemann integral. Does the Fundamental Theorem of Calculus hold if
we assume only that f ′ is Lebesgue integrable? Precisely:

If f ′(x) exists for a.e. x and f ′ is integrable, must equation (5.1) hold?

We construct a fascinating function in Section 5.1 that shows that the answer
to this question is no in general.

By the end of Chapter 6, we will characterize the functions for which the
FTC holds. To this end, we introduce in Section 5.2 the class of functions
that have bounded variation, and we prove that each such function is a finite
linear combination of monotone increasing functions. In order to make further
progress we prove two types of covering lemmas in Section 5.3, and use these
to show in Section 5.4 that all monotone increasing functions (and hence all
functions with bounded variation) are differentiable at almost every point. In
Section 5.5 we prove the Maximal Theorem, and then use it and a covering
lemma to prove the Lebesgue Differentiation Theorem, which is a fundamental
result on the convergence of averages of a locally integrable function. All of
these results will be important to us when we further study the relationship
between differentiation and integration in Chapter 6, ultimately establishing
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the connection between absolutely continuous functions and the Fundamental
Theorem of Calculus.

Most of the functions that we encounter in this chapter will be finite at
every point. Hence, we usually need only consider real-valued and complex-
valued functions. Since every real-valued function is complex-valued, it there-
fore suffices in most of this chapter to just consider complex-valued functions.

5.1 The Cantor–Lebesgue Function

We will construct a continuous function ϕ that is differentiable at almost ev-
ery point and whose derivative ϕ′ is equal almost everywhere to a continuous
function (the zero function!), yet the Fundamental Theorem of Calculus does
not apply to ϕ.

The construction is closely related to the construction of the Cantor
middle-thirds set presented in Example 2.1.23. We will also need to make
use of the fact, proved in Theorem 1.3.3, that the space C[0, 1], consisting of
all continuous functions f : [0, 1] → C, is complete with respect to the uniform
norm

‖f‖u = sup
x∈[0,1]

|f(x)|.

Precisely, completeness means that every sequence {fn}n∈N that is Cauchy
in C[0, 1] with respect to the uniform norm must actually converge uniformly
to some function f ∈ C[0, 1].

To construct the Cantor–Lebesgue function, first consider the functions
ϕ1 and ϕ2 pictured in Figure 5.1. The function ϕ1 takes the constant value
1
2 on the interval (1

3 , 2
3 ) that is removed from [0, 1] in the first stage of the

construction of the Cantor set, and it is linear on the remaining subintervals
of [0, 1]. The function ϕ2 takes the same constant 1

2 on the interval (1
3 , 2

3 ),
but additionally is constant with values 1

4 and 3
4 on the two intervals that are

removed during the second stage of the construction of the Cantor set. We
continue this process and define ϕ3, ϕ4, . . . in a similar fashion. Each function
ϕk is continuous and monotone increasing on [0, 1], and ϕk is constant on each
of the open intervals that are removed during the kth stage of the construction
of the Cantor set.

Looking at Figure 5.1, we can see that ϕ1(x) and ϕ2(x) never differ by
more than 1

2 unit (and even that is only a gross estimate). More generally,
for each k ∈ N we have

‖ϕk+1 − ϕk‖u = sup
x∈[0,1]

|ϕk+1(x) − ϕk(x)| ≤ 2−k.

Applying the Triangle Inequality, if we fix m < n then we see that
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Fig. 5.1 First stages in the construction of the Cantor–Lebesgue function.

‖ϕn − ϕm‖u =

∥∥∥∥
n−1∑

k=m

(ϕk+1 − ϕk)

∥∥∥∥
u

≤
n−1∑

k=m

‖ϕk+1 − ϕk‖u

≤
n−1∑

k=m

2−k ≤
∞∑

k=m

2−k = 2−m+1.

Consequently, if ε > 0 is fixed and we choose N large enough, then we will
have ‖ϕn−ϕm‖u < ε for all m, n ≥ N. Hence {ϕn}n∈N is a uniformly Cauchy
sequence in C[0, 1]. Since we know that every Cauchy sequence in C[0, 1] must
converge, there is some function ϕ ∈ C[0, 1] such that ϕk converges uniformly
(and therefore pointwise) to ϕ.

Definition 5.1.1 (Cantor–Lebesgue Function). The continuous function
ϕ defined by

ϕ(x) = lim
k→∞

ϕk(x), for x ∈ [0, 1],

is called the Cantor–Lebesgue function. ♦

More picturesquely, the Cantor–Lebesgue function is also known as the
Devil’s staircase on [0, 1]. If we like, we can extend ϕ to a continuous function
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Fig. 5.2 The reflected Devil’s staircase (Cantor–Lebesgue function).

on the entire real line R by reflecting its graph about the point x = 1 and
declaring ϕ to be zero outside of [0, 2] (see Figure 5.2).

If x is any point in the open interval
(

1
3 , 2

3

)
, then ϕk(x) = 1

2 for every k.
Therefore

ϕ(x) = lim
k→∞

ϕk(x) = 1
2 , for all x ∈

(
1
3 , 2

3

)
.

Similarly,
ϕ = 1

4 on
(

1
9 , 2

9

)
and ϕ = 3

4 on
(

7
9 , 8

9

)
.

Continuing in this way, we see that ϕ is differentiable on every open interval
that belongs to the complement of the Cantor set C, and

ϕ′(x) = 0, for all x ∈ [0, 1]\C.

Since the Cantor set has zero measure, we have proved the following result.

Theorem 5.1.2. The Cantor–Lebesgue function ϕ is differentiable at almost
every point of [0, 1], and ϕ′ = 0 a.e. on [0, 1]. ♦

In summary, on the interval [0, 1] the Cantor–Lebesgue function ϕ is con-
tinuous and monotone increasing, differentiable at almost every point, and
ϕ′ = 0 almost everywhere. Yet the Fundamental Theorem of Calculus does
not hold for ϕ, because

ϕ(1) − ϕ(0) = 1 6= 0 =

∫ 1

0

ϕ′(x) dx. (5.2)

We give a name to functions that are differentiable at almost every point
but whose derivative is zero a.e.

Definition 5.1.3 (Singular Function). A function f on [a, b] (either ex-
tended real-valued or complex-valued) is singular if f is differentiable at
almost every point in [a, b] and f ′ = 0 a.e. on [a, b]. ♦
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In particular, the Cantor–Lebesgue function is singular on [0, 1]. There are
many surprising examples of singular functions. For constructions of continu-
ous, strictly increasing functions that are singular on [0, 1], see Problem 5.4.8
or [BC09, Ex. 4.2.5].

The existence of singular functions shows that we need more than just
almost everywhere differentiability in order to conclude that the Fundamental
Theorem of Calculus holds for a given function. We will give a complete
characterization of the functions that satisfy the FTC in Section 6.4, and
we will see there that these are precisely the functions that are absolutely
continuous in the sense that we will introduce in Section 6.1.

The Cantor–Lebesgue function has many unusual properties. For example,
Problem 5.1.5 asks for a proof that ϕ is Hölder continuous but not Lipschitz
continuous. We show next that even though the Cantor–Lebesgue function
is continuous, it does not map measurable sets to measurable sets.

Example 5.1.4. If x ∈ [0, 1] belongs to the complement of the Cantor set C,
then ϕ(x) has the form k/2n for some integers k and n. Hence ϕ maps [0, 1]\C
into the set of rational numbers Q. Thus

ϕ
(
[0, 1]\C

)
⊆ Q ∩ [0, 1]. (5.3)

Since ϕ is a surjective mapping of [0, 1] onto itself, if z ∈ [0, 1] is irrational
then we must have z = ϕ(x) for some x. By equation (5.3), this point x
must belong to C. Thus ϕ(C) includes all of the irrational numbers in [0, 1]!
Therefore |ϕ(C)| = 1, even though |C| = 0.

Every set with positive measure contains a nonmeasurable subset, so there
exists a set N ⊆ [0, 1]\Q that is not measurable (in fact, the nonmeasurable
set constructed in Section 2.4.2 contains only one rational point, so deleting
that point gives us a nonmeasurable set that contains no rationals). Since
N contains no rationals, its inverse image E = ϕ−1(N) is entirely contained
in C. Consequently,

|E|e ≤ |C| = 0,

and therefore E is a Lebesgue measurable set. However, because ϕ maps [0, 1]
onto [0, 1] we have ϕ(E) = ϕ(ϕ−1(N)) = N. Thus ϕ(E) is not measurable,
even though E is measurable. ♦

Problems

5.1.5. Prove that the Cantor–Lebesgue function ϕ is Hölder continuous (in
the sense of Definition 1.4.1) precisely for those exponents α that lie in the
range 0 < α ≤ log3 2 ≈ 0.6309 . . . . In particular, ϕ is not Lipschitz.
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5.1.6. Exhibit a continuous function f : [0, 1] → R that is differentiable at
almost every point and satisfies f ′ ≥ 0 a.e., yet f is not monotone increasing
on [0, 1].

5.1.7. Let C be the Cantor set, let ϕ be the Cantor–Lebesgue function, and
set g(x) = ϕ(x) + x for x ∈ [0, 1].

(a) Prove that g : [0, 1] → [0, 2] is a continuous, strictly increasing bijection,
and its inverse function h = g−1 : [0, 2] → [0, 1] is also a continuous, strictly
increasing bijection.

(b) Show that g(C) is a closed subset of [0, 2], and |g(C)| = 1.

(c) Since g(C) has positive measure, it follows from Problem 2.4.9 that
g(C) contains a nonmeasurable set N. Show that A = h(N) is a Lebesgue
measurable subset of [0, 1]. (Note that N = h−1(A) is not measurable, so this
shows that the inverse image of a Lebesgue measurable set under a continuous
function need not be Lebesgue measurable.)

(d) Set f = χA. Prove that f ◦ h is not a Lebesgue measurable function,
even though f is Lebesgue measurable and h is continuous (compare this to
Lemma 3.2.5).

Remark: Since h is continuous, the inverse image under h of an open set
is open. It follows from this that the inverse image of any Borel set under h
must be a Borel set (see Problem 2.3.25 for the definition of Borel sets). Since
N = h−1(A) is not measurable and therefore is not a Borel set, we conclude
that A is not a Borel set. Hence A is an example of a Lebesgue measurable
set that is not a Borel set.

5.2 Functions of Bounded Variation

The Cantor–Lebesgue function ϕ is “unpleasant” in the sense that it is a
singular function on [0, 1]. However, it is quite nice in other ways, e.g., it
is both continuous and monotone increasing on [0, 1]. As x increases from 0
to 1, the value of ϕ(x) increases monotonically from ϕ(0) = 0 to ϕ(1) = 1.
Hence the total variation in the height of ϕ(x) as x moves from 0 to 1 is
simply ϕ(1) − ϕ(0) = 1. In contrast, at least intuitively it seems that the
total variation in height of the function f(x) = sin(1/x) over the interval [0, 1]
must be infinite. Our goal in this section is to make this idea of total variation
precise, and to characterize the functions that have finite total variation in
height. We say that these functions have “bounded variation.” We will show
that a real-valued function f has bounded variation on a finite interval [a, b]
if and only if we can write f in the form f = g − h where g and h are each
monotone increasing on [a, b]. Consequently, the space of functions that have
bounded variation on [a, b] is precisely the finite linear span of the set of
monotone increasing functions.
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5.2.1 Definition and Examples

First we must decide exactly what we mean by the variation of a function.
We could consider the arc length of the graph of f as one measure of the
variation. However, here we are interested purely in the variation in height.
For example, the variation in height alone of both f(x) = x and g(x) = x2

over the interval [0, 1] is 1, but the arc lengths of the graphs of these two
functions are different. We also want all variations in height, both upward
and downward, to be counted positively. If f is either monotone increasing
or monotone decreasing on [a, b], then it is clear that the total variation
in the height of f over the interval [a, b] is |f(b) − f(a)|. However, if f is
more complicated, then it is not so clear how we should define the total
variation. Still, we can form an approximation to the variation by examining
the values of f(x) at finitely many points in the interval [a, b]. That is, if
we fix finitely many points a = x0 < · · · < xn = b, then we can think of the
quantity

∑n
j=1 |f(xj) − f(xj−1)| as being an approximation to how much f

varies in height over the interval [a, b] (note that all variations are counted
positively). We declare the total variation of f to be the supremum of all
such approximations. Here is the precise definition.

Definition 5.2.1 (Bounded Variation). Let f : [a, b] → C be given. For
each finite partition

Γ =
{
a = x0 < · · · < xn = b

}

of [a, b], set

SΓ = SΓ [f ; a, b] =
n∑

j=1

|f(xj) − f(xj−1)|. (5.4)

The total variation of f over [a, b] (or simply the variation of f, for short) is

V [f ] = V [f ; a, b] = sup
{
SΓ : Γ is a partition of [a, b]

}
. (5.5)

We say that f has bounded variation on [a, b] if V [f ; a, b] < ∞. We collect
the functions that have bounded variation on [a, b] to form the space

BV[a, b] =
{
f : [a, b] → C : f has bounded variation

}
. ♦

Remark 5.2.2. (a) We sometimes need to consider the case a = b; we declare
that V [f ; a, a] = 0 for every function f.

(b) By Problem 5.2.17, a complex-valued function has bounded variation
if and only if its real and imaginary parts each have bounded variation. ♦

Since the total variation V [f ; a, b] is defined in equation (5.5) to be a
supremum, for each particular partition Γ of [a, b] we have SΓ ≤ V [f ; a, b].
Applying this inequality to the smallest possible partition Γ = {a < b}, we
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obtain
|f(b) − f(a)| = SΓ ≤ V [f ; a, b]. (5.6)

On the other hand, setting Γ = {a < x < b}, we see that

|f(x) − f(a)| ≤ |f(x) − f(a)| + |f(b) − f(x)| = SΓ ≤ V [f ; a, b].

Consequently,

‖f‖u = sup
x∈[a,b]

|f(x)| ≤ V [f ; a, b] + |f(a)|.

Thus every function that has bounded variation is bounded. However, we will
see in Exercise 5.2.4 that there are bounded functions that have unbounded
variation, so we have the proper inclusion

BV[a, b] ( L∞[a, b].

According to Problem 5.2.19, BV[a, b] is closed under function addition and
scalar multiplication (and several other operations). Hence BV[a, b] is a sub-
space of L∞[a, b]. It is not complete with respect to the L∞-norm, but Prob-
lem 5.2.26 shows how to define a norm on BV[a, b] with respect to which it
is a Banach space.

We will give several examples. First, we observe that Definition 5.2.1 is
consistent with our earlier remarks about functions that are monotone in-
creasing or decreasing.

Example 5.2.3. If f : [a, b] → R is monotone increasing on [a, b], then equation
(5.4) becomes a telescoping sum, and hence SΓ = f(b) − f(a) for every
partition Γ. Therefore f has bounded variation, and its total variation is
precisely V [f ; a, b] = f(b) − f(a) = |f(b) − f(a)|. Similarly, if f is monotone

decreasing then V [f ; a, b] = |f(b) − f(a)|. ♦

The Dirichlet function χ
Q does not have bounded variation on any interval

[a, b]. While f(x) = sin(1/x) is continuous on (0, 1], it does not have bounded
variation on the interval [0, 1], no matter how we define it at x = 0. The
next exercise will show that there exist continuous (and even differentiable!)
functions that do not have bounded variation. As discussed in the Prelimi-
naries, when we say that a function is differentiable on a closed interval [a, b],
we mean that it is differentiable on the interior (a, b) and the appropriate
one-sided limits exist at the endpoints a and b.

Exercise 5.2.4. For x 6= 0 define

f(x) = x sin 1
x , g(x) = x2 sin 1

x2
, h(x) = x2 sin 1

x ,

and for x = 0 set f(0) = g(0) = h(0) = 0 (see Figure 5.3). Prove the following
statements.
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Fig. 5.3 The functions f (top), g (middle), and h (bottom) discussed in Exercise 5.2.4.

(a) f is continuous on [−1, 1], f is not differentiable at the point x = 0, and
f /∈ BV[−1, 1].

(b) g is differentiable everywhere on [−1, 1], g /∈ BV[−1, 1], g′ is unbounded
and therefore not continuous on [−1, 1], and g′ /∈ L1[−1, 1].

(c) h is differentiable everywhere on [−1, 1], h ∈ BV[−1, 1], h′ is not
continuous on [−1, 1], and h′ ∈ L∞[−1, 1] ⊆ L1[−1, 1]. ♦

Another interesting example is the function k(x) = |x|3/2 sin(1/x). Ac-
cording to Problem 6.4.19, k is differentiable on [−1, 1] and has bounded
variation, while k′ is integrable but unbounded. The properties of functions
of the form |x|a sin |x|−b are studied in more detail in Problems 5.2.22, 6.3.13,
and 6.4.20.
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5.2.2 Lipschitz and Hölder Continuous Functions

Let I be an interval in the real line. Recall from Definition 1.4.1 that a
function f : I → C is Hölder continuous with exponent α > 0 if there exists a
constant K ≥ 0 such that |f(x) − f(y)| ≤ K |x − y|α for all x, y ∈ I.

The larger that we can take α, the “smoother” that the graph of f typically
appears. If we can take α = 1 then we say that f is Lipschitz continuous, or
simply that f is Lipschitz. Any number K such that

|f(x) − f(y)| ≤ K |x − y|, for all x, y ∈ I, (5.7)

is called a Lipschitz constant for f. We denote the class of Lipschitz functions
on the interval I by

Lip(I) =
{
f :I → C : f is Lipschitz

}
.

By Problem 1.4.4, f(x) = |x|1/2 is Hölder continuous but not Lipschitz on
the real line, and Problem 5.1.5 shows that the Cantor–Lebesgue function ϕ is
Hölder continuous but not Lipschitz on [0, 1]. Here are some other examples.

• Some differentiable functions are Lipschitz, e.g., f(x) = x is Lipschitz on
every interval I.

• Not every differentiable function is Lipschitz, e.g., f(x) = x2 is not Lip-
schitz on I = R.

• A Lipschitz function need not be differentiable, e.g., f(x) = |x| is Lipschitz
on I = R but it is not differentiable at the origin.

A Lipschitz function need not be differentiable everywhere, but we will
prove later that every Lipschitz function has bounded variation and therefore
is differentiable at almost every point (see Lemma 5.2.7 and Corollary 5.4.3).

Suppose that we have a real-valued function f : I → R that we know is
differentiable everywhere on I. If x 6= y ∈ I, then the Mean Value Theorem
implies that there is a point ξ between x and y such that f(x) − f(y) =
f ′(ξ) (x − y). Therefore, if f ′ is bounded (say |f ′(t)| ≤ K for t ∈ I), then

|f(x) − f(y)| = |f ′(ξ)| |x − y| ≤ K |x − y|.

Although the Mean Value Theorem only holds for real-valued functions, by
applying the MVT to the real and imaginary parts of f, a similar result can
be proved for complex-valued functions (this is Problem 1.4.2). This gives us
the following sufficient condition for a function to be Lipschitz continuous
(also compare Problem 6.4.10, which gives a characterization of Lipschitz
continuity in terms of absolute continuity).

Lemma 5.2.5. Let I be an interval in R. If f : I → C is differentiable ev-
erywhere on I and f ′ is bounded on I, then f is Lipschitz on I. ♦
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Let C1(I) be the set of all differentiable functions on I whose first deriva-
tives are continuous, i.e.,

C1(I) =
{
f ∈ C(I) : f is differentiable on I and f ′ ∈ C(I)

}
.

Specializing to the case I = [a, b] (which is the setting we will mostly be
working with in this chapter and the next), we obtain the following corollary.

Corollary 5.2.6. C1[a, b] ( Lip[a, b].

Proof. If f ∈ C1[a, b], then f is differentiable and f ′ is continuous. Since the
interval [a, b] is compact, it follows that f ′ is bounded, so f is Lipschitz by
Lemma 5.2.5. On the other hand, if we fix a < t0 < b, then g(x) = |x− t0| is
Lipschitz on [a, b] but it does not belong to C1[a, b]. ⊓⊔

Now we prove that all Lipschitz functions have bounded variation.

Lemma 5.2.7. If f is Lipschitz on [a, b] and K is a Lipschitz constant for f,
then f is uniformly continuous, f has bounded variation, and

V [f ; a, b] ≤ K (b − a). (5.8)

Proof. All continuous functions on a compact domain are uniformly contin-
uous, but we can also see this directly from equation (5.7).

If we fix any finite partition Γ = {a = x0 < · · · < xn = b}, then

SΓ =

n∑

j=1

|f(xj) − f(xj−1)| ≤
n∑

j=1

K (xj − xj−1) = K (b − a).

Taking the supremum over all such partitions yields equation (5.8). ⊓⊔

Not every function that has bounded variation is Lipschitz. For example,
f(x) = |x|1/2 is not Lipschitz on [0, 1] (compare Problem 1.4.4), yet it is
monotone increasing and therefore has bounded variation on that interval.
Thus we have the proper inclusions

C1[a, b] ( Lip[a, b] ( BV[a, b].

5.2.3 Indefinite Integrals and Antiderivatives

The following (easy) exercise is essentially the Fundamental Theorem of Cal-
culus (FTC) that we learn in undergraduate calculus, stated here using our
terminology.

Exercise 5.2.8 (Simple Version of the FTC). Prove that if g is a con-
tinuous function g on [a, b], then its indefinite integral
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G(x) =

∫ x

a

g(t) dt, x ∈ [a, b], (5.9)

has the following properties:

(a) G is differentiable everywhere on [a, b],

(b) G′(x) = g(x) for every x ∈ [a, b],

(c) G ∈ C1[a, b], so G is Lipschitz and has bounded variation on [a, b]. ♦
Thus, if g is continuous then its indefinite integral G is differentiable at

every point, and it is an antiderivative of g because G′ = g. What happens
if we assume only that the function g is integrable? Here is a partial answer.

Lemma 5.2.9. If g ∈ L1[a, b], then its indefinite integral

G(x) =

∫ x

a

g(t) dt, x ∈ [a, b],

has the following properties:

(a) G is continuous on [a, b],

(b) G ∈ BV[a, b], and

(c) the total variation of G is bounded by the L1-norm of g, i.e.,

V [G; a, b] ≤
∫ b

a

|g(t)| dt = ‖g‖1.

Proof. (a) Fix any point x ∈ (a, b). If h > 0 is small enough that x+h belongs
to [a, b], then

G(x + h) − G(x) =

∫ x+h

x

g(t) dt =

∫ b

a

g(t)χ
[x,x+h](t) dt.

The integrand g · χ
[x,x+h] is bounded by the integrable function |g|, and it

converges pointwise a.e. to zero as h → 0+. The Dominated Convergence
Theorem therefore implies that G(x + h)−G(x) → 0 as h → 0+. Combining
this with a similar argument for h → 0−, we see that G is continuous at x.
Similar one-sided arguments show that G is continuous from the right at
x = a and continuous from the left at x = b, so G is continuous on the
interval [a, b].

(b), (c) If Γ = {a = x0 < · · · < xn = b} is a partition of [a, b], then

SΓ =

n∑

j=1

|G(xj) − G(xj−1)|

≤
n∑

j=1

∫ xj

xj−1

|g(t)| dt =

∫ b

a

|g(t)| dt = ‖g‖1.
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Taking the supremum over all such partitions we see that G has bounded
variation and V [G; a, b] ≤ ‖g‖1. ⊓⊔

Remark 5.2.10. In the proof of Lemma 5.2.9 we applied the Dominated Con-
vergence Theorem to a limit of the form h → 0. Technically, we should note
that the DCT stated in Theorem 4.5.1 only applies to sequences of func-
tions indexed by the natural numbers. However, Problem 4.5.30 shows how
to generalize the DCT to families indexed by a continuous parameter. ♦

Unfortunately, Lemma 5.2.9 is not very satisfactory when compared to
Exercise 5.2.8. We are still left with the following questions.

• If g ∈ L1[a, b], is the indefinite integral G(x) =
∫ x

a
g(t) dt a differentiable

function of x?

• If the indefinite integral G is differentiable, is it the antiderivative of g?
That is, is it true that G′ = g?

The answers to these questions are not obvious at this point. In Chapter 6
we will see that:

• G is an absolutely continuous function and, as a consequence, it is differ-
entiable at almost every point in [a, b], and

• G′(x) = g(x) for almost every x ∈ [a, b].

The definition of absolute continuity will be given in Section 6.1. After we
develop some machinery, we will prove that G is absolutely continuous and
therefore differentiable a.e. (see Lemma 6.1.6), and G′ = g a.e. (Theorem
6.4.2). Furthermore, we will establish the converse fact that every absolutely
continuous function is the indefinite integral of its derivative (Theorem 6.4.2).
However, there is still work to do before we can prove these statements.

5.2.4 The Jordan Decomposition

Our next goal is to prove that every real-valued function that has bounded
variation can be written as the difference of two monotone increasing func-
tions. Before doing this, we need to develop some tools and introduce some
additional terminology. We begin with an exercise that gives some of the ba-
sic properties of the variation function V [f ; a, b]. In part (b) of this exercise,
a refinement of a partition Γ means a partition Γ ′ that includes all of the
points that are in Γ. Note that we are not assuming here that f has bounded
variation—it is possible that V [f ; a, b] could be infinite.

Exercise 5.2.11. Given f : [a, b] → C, prove the following statements.

(a) |f(b) − f(a)| ≤ V [f ; a, b].
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(b) If Γ =
{
a = x0 < · · · < xn = b

}
is a partition of [a, b] and Γ ′ is a

refinement of Γ, then SΓ ≤ SΓ ′ .

(c) If [c, d] ⊆ [a, b], then V [f ; c, d] ≤ V [f ; a, b]. ♦

We will also need the following additivity property of the total variation.

Lemma 5.2.12. If f : [a, b] → C and a < c < b, then

V [f ; a, b] = V [f ; a, c] + V [f ; c, b].

Proof. Suppose that a < c < b. Let Γ1 = {a = x0 < · · · < xm = c} and
Γ2 = {c = xm < · · · < xn = b} be finite partitions of [a, c] and [c, b],
respectively. Then Γ = Γ1 ∪ Γ2 is a partition of [a, b], and

SΓ1
+ SΓ2

= SΓ ≤ V [f ; a, b].

Holding Γ2 fixed and taking the supremum over all partitions Γ1 of [a, c] gives
us V [f ; a, c] + SΓ2

≤ V [f ; a, b]. Taking next the supremum over all partitions
Γ2 of [c, d], we obtain V [f ; a, c] + V [f ; c, b] ≤ V [f ; a, b].

For the opposite inequality, let Γ = {a = x0 < · · · < xn = b} be any finite
partition of [a, b]. There are two possibilities. If xj < c < xj+1 for some j,
then

Γ1 = {a = x0 < · · · < xj < c} and Γ2 = {c < xj+1 < · · · < xn = b}

are partitions of [a, c] and [c, b], respectively. Further, Γ ′ = Γ1 ∪ Γ2 is a
partition of [a, b] and Γ ′ is a refinement of Γ, so

SΓ ≤ SΓ ′ = SΓ1
+ SΓ2

≤ V [f ; a, c] + V [f ; c, b].

On the other hand, if c = xj for some j then a similar argument shows that
we also have SΓ ≤ V [f ; a, c] + V [f ; c, b] in this case. Taking the supremum
over all partitions Γ, we conclude that V [f ; a, b] ≤ V [f ; a, c] + V [f ; c, b]. ⊓⊔

In order to obtain monotone increasing functions that are related to the
variation of a real-valued function f, we break the total variation of f into a
“positive part” and a “negative part.” However, we do not accomplish this by
splitting f into its positive and negative parts, but rather by splitting each
term yj = f(xj) − f(xj−1) into the positive and negative parts

y+
j = max{yj , 0} and y−

j = max{−yj , 0}.

Note that y+
j − y−

j = yj and y+
j + y−

j = |yj |.

Definition 5.2.13 (Positive and Negative Variation). Let f : [a, b] → R

be a real-valued function on [a, b]. For each finite partition Γ = {a = x0 <
· · · < xn = b} of [a, b], define
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S+
Γ =

n∑

j=1

(
f(xj) − f(xj−1)

)+

and S−
Γ =

n∑

j=1

(
f(xj) − f(xj−1)

)−
.

The positive variation of f on [a, b] is

V +[f ; a, b] = sup
{
S+

Γ : Γ is a partition of [a, b]
}
,

and the negative variation is

V −[f ; a, b] = sup
{
S−

Γ : Γ is a partition of [a, b]
}
. ♦

Comparing Definitions 5.2.1 and 5.2.13, we see that for each partition Γ
we have

S+
Γ + S−

Γ = SΓ and S+
Γ − S−

Γ = f(b) − f(a). (5.10)

The next result extends these equalities from individual partitions to the
variation functions. Note that we are not assuming in this lemma that f has
bounded variation, so V, V +, or V − might be infinite.

Lemma 5.2.14. If f : [a, b] → R, then, as extended real numbers,

V +[f ; a, b] + V −[f ; a, b] = V [f ; a, b].

Further, if any one of V [f ; a, b], V +[f ; a, b], or V −[f ; a, b] is finite then the
other two are finite as well, and in this case

V +[f ; a, b] − V −[f ; a, b] = f(b) − f(a). (5.11)

Proof. For every partition Γ we have S+
Γ = S−

Γ + C, where C is the fixed,
finite constant C = f(b) − f(a). Hence, even if they are infinite,

V +[f ; a, b] = sup
Γ

S+
Γ = sup

Γ

(
S−

Γ + C
)

= V −[f ; a, b] + C.

In particular, V +[f ; a, b] is finite if and only if V −[f ; a, b] is finite.
Similarly,

SΓ = S+
Γ + S−

Γ =
(
S−

Γ + C
)

+ S−
Γ = 2S−

Γ + C,

so
V [f ; a, b] = sup

Γ
SΓ = sup

Γ

(
2S−

Γ + C
)

= 2V −[f ; a, b] + C.

Hence V [f ; a, b] is finite if and only if V −[f ; a, b] is finite.
Finally, by combining the above equalities we see that, even if they are

infinite,

V +[f ; a, b] + V −[f ; a, b] = 2V −[f ; a, b] + C = V [f ; a, b]. ⊓⊔



192 5 Differentiation

Now we prove the Jordan decomposition, which expresses a real-valued
function with bounded variation as the difference of two monotone increasing
functions. Except for an additive constant, these two monotone increasing
functions are V +[f ; a, x] and V −[f ; a, x], the positive and negative variations
of f on the interval [a, x]. Each of these variations increases with x, and we
see from equation (5.11) that their difference is precisely f(x) − f(a).

Theorem 5.2.15 (Jordan Decomposition). If f : [a, b] → R, then the fol-
lowing two statements are equivalent.

(a) f ∈ BV[a, b].

(b) There exist monotone increasing functions g and h such that f = g − h.

Proof. (a) ⇒ (b). Assume that f has bounded variation on [a, b], and set

g(x) = V +[f ; a, x] + f(a) and h(x) = V −[f ; a, x]

for x ∈ [a, b]. Exercise 5.2.11(c) implies that g and h are each monotonically
increasing, and by Lemma 5.2.14 we have

g(x) − h(x) = V +[f ; a, x] + f(a) − V −[f ; a, x] = f(x).

(b) ⇒ (a). This implication follows from Problem 5.2.19. ⊓⊔
Applying Theorem 5.2.15 to the real and imaginary parts of a complex-

valued function, we obtain the following corollary.

Corollary 5.2.16. A function f : [a, b] → C belongs to BV[a, b] if and only
if there exist monotone increasing functions f1, f2, f3, f4 on [a, b] such that

f = (f1 − f2) + i(f3 − f4). ♦

As a consequence, the space of functions with bounded variation is pre-
cisely the finite linear span of the monotone increasing functions:

BV[a, b] = span
{
f : [a, b] → C : f is monotone increasing on [a, b]

}
.

Thus, in order to make further progress understanding the properties of
functions of bounded variation, we need to understand monotone increasing
functions. To this end we will derive some useful tools in Section 5.3, and
then in Section 5.4 we will show that a monotone increasing function can
have at most countably many discontinuities and is differentiable at almost
every point.

Problems

5.2.17. Given a function f : [a, b] → C, write f = fr + ifi where fr and fi

are real-valued. Prove that f ∈ BV[a, b] if and only if fr, fi ∈ BV[a, b].
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5.2.18. Suppose that f : [a, b] → C. Show that there exist partitions Γk of
[a, b] such that Γk+1 is a refinement of Γk for each k and SΓk

ր V [f ; a, b] as
k → ∞.

5.2.19. Prove that if f and g belong to BV[a, b], then the following statements
hold.

(a) V +[f ; a, b] = 1
2

(
V [f ; a, b] + f(b) − f(a)

)
.

(b) V −[f ; a, b] = 1
2

(
V [f ; a, b] − f(b) + f(a)

)
.

(c) |f | ∈ BV[a, b].

(d) αf + βg ∈ BV[a, b] for all α, β ∈ C, and

V [αf + βg; a, b] ≤ |α|V [f ; a, b] + |β|V [g; a, b].

(e) fg ∈ BV[a, b].

(f) If |g(x)| ≥ δ > 0 for all x ∈ [a, b], then f/g ∈ BV[a, b].

5.2.20. Given functions g : [a, b] → [c, d] and f : [c, d] → C, prove the follow-
ing statements.

(a) If f is Lipschitz and g ∈ BV[a, b], then f ◦ g ∈ BV[a, b]. However, this
can fail if we assume only that f is continuous, even if f is continuous and
has bounded variation.

(b) If f ∈ BV[c, d] and g is monotone increasing on [a, b], then f ◦ g ∈
BV[a, b].

Remark: This problem will be used in the proof of Corollary 6.5.5.

5.2.21. Assume that E ⊆ R is measurable, and suppose that f : E → R is
Lipschitz on the set E, i.e., there exists a constant K ≥ 0 such that

|f(x) − f(y)| ≤ K |x − y|, for all x, y ∈ E.

Prove that |f(A)|e ≤ K |A|e for every set A ⊆ E.

5.2.22. Fix a, b > 0, and define

f(x) =

{
|x|a sin |x|−b, if x 6= 0,

0, if x = 0.

Prove the following statements (the space Cα[−1, 1] is defined in Problem
1.4.5).

(a) f ∈ BV[−1, 1] if and only if a > b.

(b) If a = b, then f ∈ Cα[−1, 1] with exponent α = b
b+1 , even though

part (a) implies that f does not have bounded variation.

(c) Cα[−1, 1] is not contained in BV[−1, 1] for any 0 < α < 1.
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5.2.23. (a) Suppose that {fn}n∈N is a sequence of complex-valued functions
on [a, b], and fn → f pointwise on [a, b]. Prove that

V [f ; a, b] ≤ lim inf
n→∞

V [fn; a, b].

(b) Exhibit functions fn and f such that fn ∈ BV[a, b] for each n ∈ N and
fn → f pointwise, but f /∈ BV[a, b].

5.2.24. Fix f ∈ BV[a, b], and extend f to the real line by setting f(x) = f(a)
for x < a and f(x) = f(b) for x > b. Prove that there exists a constant C > 0
such that

‖Ttf − f‖1 ≤ C|t|, for all t ∈ R,

where Ttf(x) = f(x − t) denotes the translation of f by t.

5.2.25. Given functions fk ∈ BV[a, b], suppose that f(x) =
∑∞

k=1 fk(x) con-
verges for each x ∈ [a, b] and

∑∞
k=1 V [fk; a, b] < ∞. Prove that f has bounded

variation, and

V [f ; a, b] ≤
∞∑

k=1

V [fk; a, b].

5.2.26. Prove the following statements.

(a) ‖f‖ = V [f ; a, b] defines a seminorm on BV[a, b], and

‖f‖BV = V [f ; a, b] + ‖f‖u, for f ∈ BV[a, b],

is a norm on BV[a, b].

(b) BV[a, b] is a Banach space with respect to ‖ · ‖BV.

(c) |||f |||BV = V [f ; a, b] + |f(a)| defines an equivalent norm for BV[a, b],
i.e., it is a norm and there exist constants C1, C2 > 0 such that

C1 ‖f‖BV ≤ |||f |||BV ≤ C2 ‖f‖BV, for all f ∈ BV[a, b].

5.2.27.* Prove that if f ∈ BV[a, b] is continuous, then the following state-
ments hold.

(a) V [f ; a, b] = lim|Γ |→0 SΓ .

(b) V (x) = V [f ; a, x] is a continuous function on [a, b].

(c) If f ∈ C1[a, b], then V [f ; a, b] =
∫ b

a
|f ′|.

5.3 Covering Lemmas

Suppose that we have a collection of open balls, or cubes, or some other type
of reasonably nice sets that cover a set E. We might have infinitely many of
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these sets, maybe even uncountably many. Many of these sets may intersect.
Is it possible to extract some subcollection of sets that are disjoint and still
cover E? In general, this will not be possible, but perhaps we can weaken
our goal a little and find a subcollection of disjoint sets that at least covers
some prescribed fraction of E. This type of result is called a covering lemma.
We will prove two such covering lemmas in this section.

5.3.1 The Simple Vitali Lemma

We begin with the Simple Vitali Lemma, which states that if we are given
any collection of open balls in Rd, then we can find finitely many disjoint balls
from the collection that cover a fixed fraction of the measure of the union of
the original balls. Up to an ε, this fraction is 3−d (so in dimension d = 1,
we can choose disjoint open intervals that cover about 1/3 of the original
collection). The proof is an example of a greedy algorithm—essentially we let
B1 be the largest possible ball in the original collection, then choose B2 to
be the largest possible ball that is disjoint from B1, and so forth.

Theorem 5.3.1 (Simple Vitali Lemma). Let B be any nonempty collec-
tion of open balls in Rd. Let U be the union of all of the balls in B, and fix
0 < c < |U |. Then there exist finitely many disjoint balls B1, . . . , BN ∈ B
such that

N∑

k=1

|Bk| >
c

3d
.

Proof. Note that the number c is finite, even if |U | = ∞. Since c < |U |,
Problem 2.3.20 implies that there exists a compact set K ⊆ U such that

c < |K| ≤ |U |.

Since B is an open cover of K, we can find finitely many balls A1, . . . , Am ∈ B
such that

K ⊆
m⋃

j=1

Aj .

Let B1 be an Aj ball that has maximal radius.
If there are no Aj balls that are disjoint from B1, then we set N = 1

and stop. Otherwise, let B2 be an Aj ball with largest radius that is disjoint
from B1 (if there is more than one such ball, just choose one of them). We
then repeat this process, which must eventually stop, to select disjoint balls
B1, . . . , BN from A1, . . . , Am. These balls need not cover K, but we hope that
they will cover an appropriate portion of K.

To prove this, let B∗
k denote the open ball that has the same center as Bk,

but with radius three times larger. Suppose that 1 ≤ j ≤ m, but Aj is not one
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of B1, . . . , BN . Then Aj must intersect at least one of the balls B1, . . . , BN .
Let k be the smallest index such that Aj ∩ Bk 6= ∅. By construction,

radius(Aj) ≤ radius(Bk).

It follows from this that Aj ⊆ B∗
k (see the “proof by picture” in Figure 5.4).

Fig. 5.4 Circle B has radius 1, circle A has radius 0.95, and circle B∗ (which has the
same center x as circle B) has radius 3.

The preceding paragraph tells us that every set Aj that is not one of
B1, . . . , BN is contained in some B∗

k . Hence

K ⊆
m⋃

j=1

Aj ⊆
N⋃

k=1

B∗
k ,

and therefore

c < |K| ≤
N∑

k=1

|B∗
k | = 3d

N∑

k=1

|Bk|. ⊓⊔

5.3.2 The Vitali Covering Lemma

Given an arbitrary collection of open balls with union U, the Simple Vitali
Lemma tells us that we can find disjoint open balls from the collection that
cover a prescribed fraction of U. In general we will not be able to cover all
of U with disjoint sets. Our next result, also due to Vitali, shows that if we
impose more conditions on our collection, then we can draw a much stronger
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conclusion. We will use closed balls for this result, and we will assume that
every point x of a set E is covered not just by one ball from our collection, but
by infinitely many balls whose radii shrink to zero. Using these hypotheses,
we will be able to prove that we can select disjoint balls that cover all of E
except for a set of measure ε.

To formulate this precisely, we define the closed ball centered at x with
radius r to be

Br(x) = {y ∈ Rd : ‖x − y‖ ≤ r}.
We let radius(B) denote the radius r of a closed ball B = Br(x). Here is the
precise requirement that we will need to impose on our collection of balls.

Definition 5.3.2 (Vitali Cover). A collection B of closed balls is a Vitali
cover of a set E ⊆ Rd if for each x ∈ E and ε > 0 there exists some ball
B ∈ B such that x ∈ B and radius(B) < ε. ♦

We prove now that if we have a Vitali covering, then there are finitely
many disjoint balls that cover all of E except possibly for a set of measure ε.
Moreover, although these balls might include points outside of E, we can
select them in such a way that the measure of their union is only slightly
more than the measure of E.

Theorem 5.3.3 (Vitali Covering Lemma). Let E be a subset of Rd with
0 < |E|e < ∞. If B is a Vitali covering of E, then for each ε > 0 there exist
disjoint balls B1, . . . , BN ∈ B such that

∣∣∣∣E \
N⋃

k=1

Bk

∣∣∣∣
e

< ε and

N∑

k=1

|Bk| < |E|e + ε. (5.12)

Proof. Let U ⊇ E be an open set such that |U | < |E|e + ε. Remove all balls
from B that are not contained in U ; this still leaves us with a Vitali cover
of E. We proceed to choose balls inductively from B, using a modification of
the greedy approach.

The first ball is arbitrary; we choose any ball B1 ∈ B. For the inductive
step, once disjoint balls B1, . . . , Bn ∈ B have been chosen, we proceed as
follows.

If |E \ (B1 ∪ · · · ∪ Bn)|e = 0, then we stop. The proof is complete in this
case, because by additivity we have

∑ |Bk| = |SBk| ≤ |U | < |E|e + ε.
Otherwise, we must keep going and somehow select a new ball Bn+1 that

is disjoint from B1, . . . , Bn. We know that there exist some balls in B disjoint
from B1, . . . , Bn because B is a Vitali cover. Specifically, since

E \ (B1 ∪ · · · ∪ Bn)

has positive measure, it contains a point x. This x belongs to the open set
U \ (B1 ∪ · · · ∪ Bn) and there are balls with arbitrarily small radius in B
that contain x, so if we choose the radius small enough then we will have



198 5 Differentiation

a ball that contains x and is disjoint from B1, . . . , Bn. But there could be
many such balls—which of them should we choose? In contrast to the proof
of Theorem 5.3.1, there need not be a ball with largest radius. So, although
we can define

sn = sup
{
radius(B) : B ∈ B and B is disjoint from B1, . . . , Bn

}
,

this supremum need not be achieved. Therefore we settle for being “suffi-
ciently greedy” in the sense that we choose a ball Bn+1 that is disjoint from
B1, . . . , Bn and has radius more than half of this supremum, i.e.,

radius(Bn+1) >
sn

2
.

If this process stops after finitely many steps, then the proof is finished.
Otherwise, we will continue forever, obtaining countably many disjoint closed
balls B1, B2, . . . . These balls are contained in U, so

∞∑

k=1

|Bk| =

∣∣∣∣
∞⋃

k=1

Bk

∣∣∣∣ ≤ |U | < |E|e + ε < ∞.

Consequently |Bk| → 0, and therefore radius(Bk) → 0, as k → ∞.

Fix an integer N ∈ N, and suppose that x belongs to E \ ⋃N
k=1 Bk. Then

x ∈ U but x /∈ B1, . . . , BN , so x belongs to the open set

UN = U \ (B1 ∪ · · · ∪ BN ).

Since B is a Vitali cover, there exists a ball B ∈ B that contains x and is
disjoint from B1, . . . , BN .

Suppose that B was disjoint from B1, . . . , Bk for every k ∈ N. Then, given
how we constructed Bk+1, we must have

radius(Bk+1) ≥ 1

2
radius(B). (5.13)

Hence radius(B) ≤ 2 radius(Bk+1) → 0, which is a contradiction. Therefore
B must intersect at least one ball Bk.

Let n ∈ N be the smallest integer such that B is disjoint from B1, . . . , Bn−1

but B ∩ Bn 6= ∅ (note that n > N). Just as in equation (5.13),

radius(B) ≤ 2 radius(Bn). (5.14)

Let B∗
k denote the closed ball that has the same center as Bk but with 5 times

the radius. Since B intersects Bn and equation (5.14) holds, an argument
similar to the one illustrated in Figure 5.4 shows that B ⊆ B∗

n. Consequently,
x ∈ B ⊆ B∗

n where n > N, so we have shown that
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E \
N⋃

k=1

Bk ⊆
⋃

k>N

B∗
k .

Therefore ∣∣∣∣E \
N⋃

k=1

Bk

∣∣∣∣
e

≤
∞∑

k=N+1

|B∗
k | = 5d

∞∑

k=N+1

|Bk|.

Since
∑∞

k=1 |Bk| < ∞, by choosing N large enough we will obtain

∣∣∣∣E \
N⋃

k=1

Bk

∣∣∣∣
e

< ε. ⊓⊔

We could have used closed cubes instead of closed balls in Theorem 5.3.3.
The proof would be identical, except that we would work with sidelengths
instead of radii.

Remark 5.3.4. We can derive some further conclusions from equation (5.12)
by applying Carathéodory’s Criterion. Specifically, if equation (5.12) holds,
then

|E|e =

∣∣∣∣E ∩
N⋃

k=1

Bk

∣∣∣∣
e

+

∣∣∣∣E \
N⋃

k=1

Bk

∣∣∣∣
e

(by Carathéodory)

<

∣∣∣∣E ∩
N⋃

k=1

Bk

∣∣∣∣
e

+ ε (by equation (5.12)),

and therefore

N∑

k=1

|Bk| =

∣∣∣∣
N⋃

k=1

Bk

∣∣∣∣
e

≥
∣∣∣∣E ∩

N⋃
k=1

Bk

∣∣∣∣
e

> |E|e − ε. (5.15)

These inequalities will be useful to us when we prove Theorem 5.4.2. ♦

Problems

5.3.5. Assume that E ⊆ Rd satisfies 0 < |E|e < ∞, and let B be a Vitali
covering of E. Given ε > 0, prove that there exist countably many disjoint
balls Bk ∈ B such that

∣∣∣E \ ⋃
k

Bk

∣∣∣
e

= 0 and
∑

k

|Bk| < |E|e + ε.
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5.4 Differentiability of Monotone Functions

In this section we will prove that a monotone increasing function on [a, b]
is differentiable at almost every point of the interval. This fact, which may
seem to be “obvious,” takes a surprising amount of work to prove. We will
need to use the Vitali Covering Lemma, and also make use of the following
notions.

Definition 5.4.1 (Dini Numbers). Let f be a real-valued function on a
set E ⊆ R. If x is an interior point of E (so f is defined on an open interval
containing x), then the four Dini numbers or derivates of f at x are

D+f(x) = lim sup
h→0+

f(x + h) − f(x)

h
,

D+f(x) = lim inf
h→0+

f(x + h) − f(x)

h
,

D−f(x) = lim sup
h→0−

f(x + h) − f(x)

h
,

D−f(x) = lim inf
h→0−

f(x + h) − f(x)

h
. ♦

We always have D+f(x) ≤ D+f(x) and D−f(x) ≤ D−f(x). The function
f is differentiable at x ∈ E◦ if and only if all four Dini numbers are equal
and finite.

Now we prove that all monotone increasing functions are differentiable a.e.
Further, although we know that the Fundamental Theorem of Calculus need
not hold for monotone increasing functions (the Cantor–Lebesgue function
is a counterexample), we prove that the integral of f ′ satisfies a certain in-
equality when f is monotone increasing.

Theorem 5.4.2 (Differentiability of Monotone Functions). If a func-
tion f : [a, b] → R is monotone increasing, then the following statements hold.

(a) f has at most countably many discontinuities, and they are all jump dis-
continuities.

(b) f ′(x) exists for almost every x ∈ [a, b].

(c) f ′ is measurable and f ′ ≥ 0 a.e.

(d) f ′ ∈ L1[a, b], and

0 ≤
∫ b

a

f ′ ≤ f(b) − f(a). (5.16)

Proof. For simplicity of presentation, extend the domain of f to the entire
real line by setting f(x) = f(a) for x < a and f(x) = f(b) for x > b.
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(a) Since f is monotone increasing and takes real values at each point of
[a, b], it follows that f is bounded on [a, b] and the one-sided limits

f(x−) = lim
y→x−

f(y) and f(x+) = lim
y→x+

f(y)

exist at every point x ∈ (a, b). The appropriate one-sided limits also exist at
the points a and b. Consequently, each point of discontinuity of f must be
a jump discontinuity. Since f is bounded, if we fix a positive integer k, then
there can be at most finitely many points x ∈ [a, b] such that

f(x+) − f(x−) ≥ 1

k
.

Since every jump discontinuity must satisfy this inequality for some integer
k ∈ N, we conclude that there can be at most countably many discontinuities.

(b) For the proof of this part we will implicitly restrict our attention to
points in the open interval (a, b). Since f is monotone increasing, Problem
5.4.9 shows that each of the four Dini numbers of f are finite a.e. on (a, b).
Let

S = {D+f > D−f} =
{
x ∈ (a, b) : D+f(x) > D−f(x)

}
.

We will prove that S has measure zero. A similar argument works for any
other pair of Dini numbers, so this will show that all four Dini numbers are
equal for a.e. x.

Since f is monotone increasing, each Dini number is nonnegative. Let
0 < s < r be fixed rational numbers, and set

A =
{
D−f < s < r < D+f

}
.

Consider the collection of closed intervals

B =

{
[x − h, x] ⊆ (a, b) : x ∈ (a, b), h > 0, and

f(x − h) − f(x)

−h
< s

}
.

If x ∈ A then D−f(x) < s, so by the definition of liminf there must exist
arbitrarily small values of h > 0 such that

f(x − h) − f(x)

−h
< s. (5.17)

This need not be true for all h > 0, but there must at least exist a sequence
of values of h that tend to zero for which equation (5.17) holds. For each of
these particular h the closed interval [x−h, x] belongs to B. This shows that
B is a Vitali covering of the set A.

Fix ε > 0. By the Vitali Covering Lemma and one of the extra conclusions
that appear in equation (5.15), there exist finitely many disjoint intervals in
B, say In = [xn − hn, xn] for n = 1, . . . , N, such that
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∣∣∣∣A ∩
N⋃

n=1
In

∣∣∣∣
e

> |A|e − ε and

N∑

n=1

hn < |A|e + ε. (5.18)

Since each interval In = [xn − hn, xn] belongs to B, we have

f(xn) − f(xn − hn)

hn
=

f(xn − hn) − f(xn)

−hn
< s.

Therefore

N∑

n=1

(
f(xn) − f(xn − hn)

)
< s

N∑

n=1

hn < s
(
|A|e + ε

)
. (5.19)

Let

B = A ∩
N⋃

n=1
In.

By equation (5.18) we have |B|e > |A|e − ε. If y ∈ B then y ∈ A and y ∈ In

for some n. We have D+f(y) > r, so by the definition of limsup there exist
infinitely many values of k that tend to zero such that

f(y + k) − f(y)

k
> r.

Proceeding similarly to before, we construct a Vitali cover of B and apply
the Vitali Covering Lemma to infer the existence of disjoint intervals Jm =
[ym, ym + km] for m = 1, . . . ,M such that each Jm is contained in some In

and

M∑

m=1

km =

∣∣∣∣
M⋃

m=1
Jm

∣∣∣∣ ≥
∣∣∣∣B ∩

M⋃
m=1

Jm

∣∣∣∣
e

> |B|e − ε > |A|e − 2ε.

Since each interval Jm = [ym, ym + km] belongs to B, we have

f(ym + km) − f(ym)

km
> r,

and therefore

M∑

m=1

(
f(ym + km) − f(ym)

)
> r

M∑

m=1

km > r
(
|A|e − 2ε

)
. (5.20)

Now, each Jm is contained in some In. There may be more than one Jm

in In, but the intervals Jm are disjoint. Since f is monotone increasing, it
follows that



5.4 Differentiability of Monotone Functions 203

M∑

m=1

(
f(ym + km) − f(ym)

)
≤

N∑

n=1

(
f(xn) − f(xn − hn)

)
. (5.21)

Combining equations (5.19)–(5.21), we conclude that

r
(
|A|e − 2ε

)
< s

(
|A|e + ε

)
.

Since ε is arbitrary, this implies that r |A|e ≤ s |A|e. But r > s, so we must
have |A|e = 0. Taking the union over all rational r and s with s < r, we see
then that S = {D+f > D−f} has measure zero. A similar argument applies
to any other pair of Dini numbers, so all four Dini numbers are equal for
almost every x ∈ (a, b).

(c) The functions

fn(x) =
f(x + 1

n ) − f(x)
1
n

= n
(
f(x + 1

n ) − f(x)
)
, x ∈ R,

converge pointwise a.e. to f ′(x) on [a, b] as n → ∞. Each fn is measurable
and nonnegative (because f is monotone increasing), so f ′ is measurable and
f ′ ≥ 0 a.e.

(d) By Fatou’s Lemma,

∫ b

a

f ′ =

∫ b

a

lim inf
n→∞

fn ≤ lim inf
n→∞

∫ b

a

fn.

On the other hand, recalling how we extended the domain of f to R, for each
individual n we compute that

∫ b

a

fn = n

∫ b+ 1
n

a+ 1
n

f − n

∫ b

a

f (by the definition of fn)

= n

∫ b+ 1
n

b

f − n

∫ a+ 1
n

a

f

= n

∫ b+ 1
n

b

f(b) − n

∫ a+ 1
n

a

f (since f is constant on [b,∞))

≤ n

∫ b+ 1
n

b

f(b) − n

∫ a+ 1
n

a

f(a) (since f is monotone increasing)

= f(b) − f(a).

Therefore ∫ b

a

f ′ ≤ lim inf
n→∞

∫ b

a

fn ≤ f(b) − f(a) < ∞,
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so f ′ is integrable. ⊓⊔

As illustrated by the Cantor–Lebesgue function, it is possible for strict
inequality to hold in equation (5.16).

Now we combine Theorem 5.4.2 with the Jordan decomposition to show
that functions that have bounded variation on [a, b] are differentiable a.e. and
have integrable derivatives.

Corollary 5.4.3. Choose f ∈ BV[a, b], and for each x ∈ [a, b] let V (x) =
V [f ; a, x] be the total variation of f over [a, x]. Then the following statements
hold.

(a) f ′(x) exists for a.e. x ∈ [a, b].

(b) f ′ ∈ L1[a, b].

(c) |f ′| ≤ V ′ a.e.

(d) The L1-norm of f ′ is bounded by the total variation of f, i.e.,

‖f ′‖1 =

∫ b

a

|f ′| ≤ V [f ; a, b]. (5.22)

Proof. (a), (b) If f is a complex-valued function that has bounded variation,
then we can write f = (f1 − f2) + i(f3 − f4) where f1, f2, f3, f4 are each
monotone increasing. Theorem 5.4.2 implies that each fk is differentiable
a.e. and f ′

k is integrable. Since these properties are preserved by finite linear
combinations, it follows that f is differentiable a.e. and f ′ is integrable.

(c) Exercise 5.2.11(c) implies that V (x) = V [f ; a, x] is monotone increasing
on [a, b]. Therefore V is differentiable a.e. by Theorem 5.4.2.

Let Z be the set of measure zero that consists of all points x ∈ [a, b] where
either f ′(x) or V ′(x) does not exist. Fix x /∈ Z with x 6= b. If h > 0 is small
enough that x+h ∈ [a, b], then by applying equation (5.6) and Lemma 5.2.12
we see that

|f(x + h) − f(x)| ≤ V [f ;x, x + h] = V (x + h) − V (x).

Since f and V are both differentiable at x, it follows that

|f ′(x)| = lim
h→0+

∣∣∣∣
f(x + h) − f(x)

h

∣∣∣∣ ≤ lim
h→0+

V (x + h) − V (x)

h
= V ′(x).

Thus |f ′| ≤ V ′ a.e.

(d) Using part (c) and applying equation (5.16) to the monotone increasing
function V, we obtain

∫ b

a

|f ′| ≤
∫ b

a

V ′ ≤ V (b) − V (a) = V [f ; a, b]. ⊓⊔
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As an application of Theorem 5.4.2, we prove a lemma due to Fubini.

Lemma 5.4.4. Assume fk is monotone increasing on [a, b] for each k ∈ N.
If the series

s(x) =

∞∑

k=1

fk(x)

converges (to a finite real number) for every x ∈ [a, b], then s is differen-
tiable a.e. and

s′(x) =

∞∑

k=1

f ′
k(x) a.e. (5.23)

Proof. For each N ∈ N, let

sN (x) =
N∑

k=1

fk(x) and rN (x) =
∞∑

k=N+1

fk(x).

By hypothesis, the series defining rN (x) converges for every x, so s(x) =
sN (x) + rN (x) for every x. Since sN and rN are monotone increasing on
[a, b], Theorem 5.4.2 implies that they are differentiable except possibly on
some set ZN that has measure zero. Further, s′N ≥ 0 a.e. and r′N ≥ 0 a.e.
Consequently s is differentiable at all points x /∈ Z =

S

ZN , and

s′(x) = s′N (x) + r′N (x), for all x /∈ Z.

Our goal is to show that s′N (x) → s′(x) for a.e. x.
Now, sN (x) → s(x) everywhere, so rN (x) → 0 for every x. For each j ∈ N,

choose Nj large enough that we have both rNj
(a) < 2−j and rNj

(b) < 2−j .
Then

0 ≤
∞∑

j=1

(
rNj

(b) − rNj
(a)

)
< ∞. (5.24)

Since r′N ≥ 0 a.e., the series g(x) =
∑∞

j=1 r′Nj
(x) converges at almost every

point in the extended real sense. We compute that

0 ≤
∫ b

a

g =

∫ b

a

∞∑

j=1

r′Nj

=

∞∑

j=1

∫ b

a

r′Nj
(by Corollary 4.2.4)

≤
∞∑

j=1

(
rNj

(b) − rNj
(a)

)
(by Theorem 5.4.2)

< ∞ (by equation (5.24)).
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Thus g is integrable, so it must be finite a.e. Hence

0 ≤ g(x) =

∞∑

j=1

r′Nj
(x) < ∞ a.e.

Therefore, for a.e. x,

lim
j→∞

(
s′(x) − s′Nj

(x)
)

= lim
j→∞

r′Nj
(x) = 0.

Thus s′Nj
(x) → s′(x) a.e. Although this only tells us that a subsequence of

the partial sums converges, the fact that f ′
k ≥ 0 a.e. implies that the partial

sums s′N =
∑N

k=1 f ′
k increase with N :

s′1(x) ≤ s′2(x) ≤ · · · for a.e. x. (5.25)

The reader should check that since s′N is monotone increasing and a subse-
quence converges a.e. to s′, we have that s′N ր s′ a.e. as N → ∞. Hence
equation (5.23) holds. ⊓⊔

Problems

5.4.5. Let I be any interval in R (possibly infinite, and not necessarily closed).
Prove that any monotone increasing function f : I → R is differentiable a.e.
on I (note that f need not be bounded).

5.4.6. Assume that f : [a, b] → R is continuous and D+f ≥ 0 on (a, b). Prove
that f is monotone increasing on [a, b].

5.4.7. Let {rk}k∈N be an enumeration of the rational points in (0, 1). Define

f(x) =

∞∑

n=1

2−n χ
[rn,1](x), x ∈ [0, 1].

Prove that f is monotone increasing on [0, 1], right-continuous at every point
in [0, 1], discontinuous at every rational point in (0, 1), and continuous at
every irrational point in (0, 1).

5.4.8. (Brown [Bro69]) Let ϕ be the Cantor–Lebesgue function on [0, 1]. Ex-
tend ϕ to R by setting ϕ(x) = ϕ(0) = 0 for x < 0 and ϕ(x) = ϕ(1) = 1 for
x > 1. Let {[an, bn]}n∈N be an enumeration of all subintervals of [0, 1] with
rational endpoints an < bn. For each n ∈ N set

fn(x) = 2−n ϕ
( x − an

bn − an

)
, x ∈ R.
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Observe that fn is monotone increasing on R and has uniform norm ‖fn‖u =
2−n. Prove the following statements.

(a) The series f =
∑∞

n=1 fn converges uniformly on [0, 1].

(b) f is continuous and monotone increasing on [0, 1].

(c) f is strictly increasing on [0, 1], i.e., if 0 ≤ x < y ≤ 1 then f(x) < f(y).

(d) f is singular on [0, 1], i.e., f ′(x) exists for almost every x ∈ [0, 1] and
f ′ = 0 a.e. (Lemma 5.4.4 is helpful here).

5.4.9. This problem will show that if f : [a, b] → R is monotone increasing,
then D+f < ∞ a.e. Suppose that A = {D+f = ∞} had positive measure,
and fix any number M > 0.

(a) Prove that B =

{
[x, y] ⊆ (a, b) : x ∈ A, y ∈ (a, b),

f(y) − f(x)

y − x
> M

}

is a Vitali cover of A.

(b) Given 0 < ε < |A|e, use the Vitali Covering Lemma to show that
there exist disjoint intervals [xk, yk] ∈ B, where k = 1, . . . , N, such that∑N

k=1(yk − xk) > |A|e − ε.

(c) Show that
∑N

k=1

(
f(yk) − f(xk)

)
> M

(
|A|e − ε

)
.

(d) Derive a contradiction, and conclude that |A|e = 0. Show that D−f,
D+f, and D−f are also finite a.e.

5.5 The Lebesgue Differentiation Theorem

Suppose that a function f : Rd → C is continuous at a point x. In this case,
f “does not vary much” over a small ball Bh(x) centered at x. Hence the
average of f over this small ball, which we will denote by

f̃h(x) =
1

|Bh(x)|

∫

Bh(x)

f(t) dt, (5.26)

should be close to the value taken by f at the center of the ball, and we expect
that this average value will converge to f(x) as the radius h shrinks to zero.
The next lemma makes these statements precise. Although it is true that the
measure of the ball Bh(x) is Cd hd, where Cd is a constant that depends only
on the dimension d, we will write it as |Bh(x)| to emphasize the averaging
operation that is being performed. The observation that

1

|Bh(x)|

∫

Bh(x)

dt = 1

is a trivial but surprisingly convenient fact that is employed in many proofs
of this type.



208 5 Differentiation

Lemma 5.5.1. If a function f : Rd → C is continuous at a point x ∈ Rd,
then

lim
h→0

1

|Bh(x)|

∫

Bh(x)

|f(x) − f(t)| dt = 0 (5.27)

and
lim
h→0

f̃h(x) = f(x). (5.28)

Proof. Suppose that f is continuous at x, and fix ε > 0. Then there is a δ > 0
such that |f(x) − f(t)| < ε whenever t satisfies ‖x − t‖ < δ. Hence for all
0 < h < δ we have

1

|Bh(x)|

∫

Bh(x)

|f(x) − f(t)| dt ≤ 1

|Bh(x)|

∫

Bh(x)

ε dt = ε.

This proves equation (5.27). Equation (5.28) follows from equation (5.27),
because

|f(x) − f̃h(x)| =

∣∣∣∣f(x)
1

|Bh(x)|

∫

Bh(x)

dt − 1

|Bh(x)|

∫

Bh(x)

f(t) dt

∣∣∣∣

=
1

|Bh(x)|

∣∣∣∣
∫

Bh(x)

(
f(x) − f(t)

)
dt

∣∣∣∣

≤ 1

|Bh(x)|

∫

Bh(x)

|f(x) − f(t)| dt. ⊓⊔

According to the following exercise, if f is uniformly continuous on Rd,

then the averages f̃h converge to f uniformly, not just pointwise.

Exercise 5.5.2. Prove that if f : Rd → C is uniformly continuous on Rd,
then

lim
h→0

‖f − f̃h‖u = 0. ♦

5.5.1 L1-Convergence of Averages

If f is not continuous at x, then it need not be true that averages of f over
balls Bh(x) will converge to f(x) as h → 0. Even so, we will soon prove
the Lebesgue Differentiation Theorem, which shows that if f is an integrable
function, then these averages converge pointwise almost everywhere. This is a
nontrivial result, and it will require some work. For motivation, we first prove
the easier fact that the averages f̃h of an integrable function f converge to f
in L1-norm as h → 0.

Theorem 5.5.3. If f ∈ L1(Rd), then f̃h → f in L1-norm, i.e.,
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lim
h→0

‖f − f̃h‖1 = lim
h→0

∫

Rd

|f(x) − f̃h(x)| dx = 0.

Proof. Let χh denote the characteristic function of the open ball of radius h
centered at the origin, but rescaled so that

∫
χh = 1. Explicitly,

χh =
1

|Bh(0)|
χ

Bh(0).

Using this notation, we can rewrite f̃h as

f̃h(x) =
1

|Bh(0)|

∫

Bh(0)

f(x − t) dt =

∫

Rd

f(x − t)χh(t) dt. (5.29)

Using Tonelli’s Theorem to interchange the order of integration and noting
that χh is only nonzero on Bh(0), we can therefore estimate the L1-norm of

f − f̃h as follows:

‖f − f̃h‖1 =

∫

Rd

|f(x) − f̃h(x)| dx

=

∫

Rd

∣∣∣∣f(x)

∫

Rd

χh(t) dt −
∫

Rd

f(x − t)χh(t) dt

∣∣∣∣ dx

≤
∫

Rd

∫

Rd

|f(x) − f(x − t)|χh(t) dt dx

=
1

|Bh(0)|

∫

Bh(0)

(∫

Rd

|f(x) − f(x − t)| dx

)
dt

=
1

|Bh(0)|

∫

‖t‖<h

‖f − Ttf‖1 dt,

where Ttf(x) = f(x − t) denotes the translation of f by t. The “strong
continuity” property of translation on L1(Rd) established in Exercise 4.5.9
tells us that

lim
t→0

‖f − Ttf‖1 = 0.

Therefore, if we fix an ε > 0, then there is some δ > 0 such that ‖f−Ttf‖1 < ε
whenever ‖t‖ < δ. Consequently, for all 0 < h < δ we have

‖f − f̃h‖1 ≤ 1

|Bh(0)|

∫

‖t‖<h

‖f − Ttf‖1 dt ≤ 1

|Bh(0)|

∫

‖t‖<h

ε dt = ε. ⊓⊔

We introduced the operation of convolution in Section 4.6.3. If functions
f and g are defined on the domain Rd, then their convolution is the function
f ∗ g defined by

(f ∗ g)(x) =

∫

Rd

f(x − t) g(t) dt,
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as long as this integral exists. Using this terminology, equation (5.29) says
that the average of f over the ball Bh(x) is the convolution of f with χh:

f̃h(x) =

∫

Rd

f(x − t)χh(t) dt = (f ∗ χh)(x).

Hence an equivalent wording of Theorem 5.5.3 is that for every f ∈ L1(Rd),
we have that

f ∗ χh → f in L1-norm as h → 0.

This is a special case of the results on approximate identities that we will
prove when we study convolution in detail in Section 9.1. In fact, our proof
of Theorem 5.5.3 is a simplified version of the proof of Theorem 9.1.11.

5.5.2 Locally Integrable Functions

When we prove the Lebesgue Differentiation Theorem, we will see that we
do not need to restrict ourselves to functions that are integrable on all of Rd.
Instead, we will be able to prove the theorem for functions that are merely
locally integrable in the following sense.

Definition 5.5.4 (Locally Integrable Functions). Let f : Rd → F be a
measurable function on Rd. We say that f is locally integrable if its restriction
to any compact set K is integrable. In other words, f is locally integrable if

‖f · χK‖1 =

∫

K

|f | < ∞ for every compact set K ⊆ Rd.

The space of locally integrable functions on Rd is

L1
loc(R

d) =
{
f :Rd → F : f is locally integrable on Rd

}
. ♦

Since every compact set is bounded, a measurable function f is locally
integrable if and only if

‖f · χBN (0)‖1 =

∫

‖x‖<N

|f(x)| dx < ∞, for all N ∈ N.

Every continuous function, including polynomials and ex, is locally integrable.

5.5.3 The Maximal Theorem

Our ultimate goal is to prove the Lebesgue Differentiation Theorem, which
states that if f is locally integrable, then for almost every x we have
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f(x) = lim
h→0

f̃h(x) = lim
h→0

1

|Bh(x)|

∫

Bh(x)

f(t) dt.

However, we need to develop some tools before we can do this. Specifically,
before we can understand how limits of averages behave, we need to un-
derstand the supremum of these averages. In fact, to obtain a true upper
estimate, we will consider the supremum of the averages of |f |, rather than
averages of f. This leads us to the Hardy–Littlewood maximal function, which
is defined as follows.

Definition 5.5.5 (Hardy–Littlewood Maximal Function). The Hardy–
Littlewood maximal function of a locally integrable function f is

Mf(x) = sup
h>0

f̃h(x) = sup
h>0

1

|Bh(x)|

∫

Bh(x)

|f(t)| dt. ♦

Each averaged function f̃h is measurable. In fact, f̃h is continuous by Prob-
lem 5.5.13 (this is not so surprising, since averaging tends to be a smoothing
operation). The supremum of a family of continuous functions need not be
continuous, but it is lower semicontinuous in the sense given in Problem
1.1.24. Hence Mf is a fairly nice function in certain ways. To illustrate this,
let g = |f |, so Mf = suph>0 gh̃. Then for any a ∈ R, the set

{Mf > a} =
⋃

h>0

{
gh̃ > a

}

is open, because gh̃ is continuous and therefore {gh̃ > a} = gh̃
−1(a,∞) is

open. Thus {Mf > a} is an open set, not just a measurable set.
Unfortunately, Mf is not integrable, even if f is integrable (except in the

trivial case f = 0 a.e.); see Problem 5.5.22. Even so, if f is integrable then
Mf does possess a property that is reminiscent of integrable functions. To
motivate this, recall Tchebyshev’s Inequality (Theorem 4.1.9), which states
that if f ∈ L1(Rd) then we have the following inequality relating the measure
of the set where |f | exceeds α to the integral of |f |:

∣∣{|f | > α}
∣∣ ≤ 1

α

∫

Rd

|f |.

Hence, if Mf were integrable then we would have

∣∣{Mf > α}
∣∣ ≤ 1

α

∫

Rd

Mf. (5.30)

Sadly, Mf is not integrable, but the following important result, known as the
Hardy–Littlewood Maximal Theorem, or simply the Maximal Theorem, gives
us a substitute: The equation obtained by replacing Mf with 3d|f | on the
right-hand side of equation (5.30) holds whenever f is integrable.
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Theorem 5.5.6 (The Maximal Theorem). If f ∈ L1(Rd), then for each
α > 0 we have

∣∣{Mf > α}
∣∣ ≤ 3d

α

∫

Rd

|f | =
3d

α
‖f‖1.

Proof. For each α > 0, let Eα =
{
Mf > α

}
. If x ∈ Eα, then

α < Mf(x) = sup
h>0

1

|Bh(x)|

∫

Bh(x)

|f(t)| dt.

Hence there must exist some radius rx such that

1

|Brx
(x)|

∫

Brx(x)

|f(t)| dt > α. (5.31)

We trivially have
Eα ⊆ ⋃

x∈Eα

Brx
(x).

Therefore, if we fix 0 < c < |Eα|, then the Simple Vitali Lemma implies
that there exist finitely many points x1, . . . , xN ∈ Eα such that the balls
Bk = Brxk

(xk) for k = 1, . . . , N are disjoint and satisfy

N∑

k=1

|Bk| >
c

3d
. (5.32)

Consequently,

c < 3d
N∑

k=1

|Bk| (by equation (5.32))

≤ 3d
N∑

k=1

1

α

∫

Bk

|f | (by equation (5.31))

≤ 3d 1

α

∫

Rd

|f | (by disjointness).

Since this is true for all 0 < c < |Eα|, we conclude that

|Eα| ≤ 3d

α

∫

Rd

|f | < ∞. ⊓⊔
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5.5.4 The Lebesgue Differentiation Theorem

Now we prove the Lebesgue Differentiation Theorem.

Theorem 5.5.7 (Lebesgue Differentiation Theorem). If f is locally in-
tegrable on Rd, then for almost every x ∈ Rd we have

lim
h→0

1

|Bh(x)|

∫

Bh(x)

|f(x) − f(t)| dt = 0, (5.33)

and

lim
h→0

f̃h(x) = lim
h→0

1

|Bh(x)|

∫

Bh(x)

f(t) dt = f(x). (5.34)

Proof. Step 1: Proof of equation (5.34) for integrable functions.
Assume that f is integrable. Restating equation (5.34) in an equivalent

form that uses the real-parameter version of limsup, our goal is to show that

lim sup
h→0

|f(x) − f̃h(x)| = 0 for a.e. x ∈ Rd. (5.35)

Fix ε > 0. By Theorem 4.5.8, there exists a function g ∈ Cc(R
d) that

satisfies ‖f − g‖1 < ε. Therefore, for every x ∈ Rd we have that

|f(x) − f̃h(x)|

≤ |f(x) − g(x)| + |g(x) − gh̃(x)| + |gh̃(x) − f̃h(x)|

= |f(x) − g(x)| + |g(x) − gh̃(x)| +

∣∣∣∣
1

|Bh(x)|

∫

Bh(x)

(
g(t) − f(t)

)
dt

∣∣∣∣

≤ |f(x) − g(x)| + ‖g − gh̃‖u + M(g − f)(x).

Since g is uniformly continuous, Exercise 5.5.2 shows that gh̃ → g uniformly.
Therefore

lim sup
h→0

|f(x) − f̃h(x)|

≤ |f(x) − g(x)| +
(
lim sup

h→0
‖g − gh̃‖u

)
+ M(g − f)(x)

= |f(x) − g(x)| + 0 + M(g − f)(x). (5.36)

Fix α > 0, and let

Eα =

{
lim sup

h→0
|f − f̃h| > 2α

}
.

By equation (5.36), if x ∈ Eα then we must have either |f(x) − g(x)| > α or
M(g − f)(x) > α. Therefore
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Eα ⊆ Fα ∪ Gα

where

Fα =
{
|f − g| > α

}
and Gα =

{
M(g − f) > α

}
.

By Tchebyshev’s Inequality,

|Fα| =
∣∣{|f − g| > α

}∣∣ ≤ 1

α

∫

Rd

|f − g| =
1

α
‖f − g‖1 <

ε

α
.

On the other hand, the Maximal Theorem implies that

|Gα| =
∣∣{M(g − f) > α}

∣∣ ≤ 3d

α

∫

Rd

|f − g| =
3d

α
‖f − g‖1 <

3dε

α
.

Consequently,

|Eα| ≤ |Fα| + |Gα| <
3d + 1

α
ε.

This holds for every ε > 0, so we conclude that |Eα| = 0. And this is true for
every α > 0, so the set

Z =
{

lim sup
h→0

|f − f̃h| > 0
}

=
∞⋃

n=1
E1/n

has measure zero. Therefore equation (5.35) holds when f is integrable.

Step 2: Proof of equation (5.34) for locally integrable functions.
Now assume that f is locally integrable. Given an integer N ∈ N, let

g = f · χBN (0),

and observe that g is integrable since f is locally integrable. Further, if
‖x‖ < N then f̃h(x) = gh̃(x) for all small enough h. Applying Step 1 to g, it
follows that

lim
h→0

f̃h(x) = lim
h→0

gh̃(x) = g(x) = f(x), for a.e. x ∈ BN (0).

Since the union of countably many sets with measure zero still has measure

zero, this implies that f̃h(x) → f(x) for a.e. x ∈ Rd.

Step 3: Proof of equation (5.33) for locally integrable functions.
Assume that f is locally integrable. Given a scalar c ∈ C, set gc(x) =

|f(x) − c|. Then gc is locally integrable, so by applying Step 2 to gc we see
that

lim
h→0

1

|Bh(x)|

∫

Bh(x)

|f(t) − c| dt = |f(x) − c| (5.37)
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for a.e. x ∈ Rd. That is, for every c ∈ C, equation (5.37) holds for a.e. x.
However, we need to prove something different. Specifically, we need to prove
that for a.e. x ∈ Rd, equation (5.37) holds when we take c = f(x). This does
not follow from what we have established so far (consider Problem 2.2.36).

So, for each c ∈ C let Zc denote the set of measure zero where equation
(5.37) does not hold. Let R = Q + iQ be the set of all rational complex
numbers. Then R is countable, so

Z =
⋃

c∈R

Zc

has measure zero.
Suppose that x /∈ Z, and choose ε > 0. Since f(x) is a complex scalar and

since R is dense in C, there is a point c ∈ R such that

|f(x) − c| < ε.

Therefore

lim sup
h→0

1

|Bh(x)|

∫

Bh(x)

|f(x) − f(t)| dt

≤ lim sup
h→0

1

|Bh(x)|

∫

Bh(x)

(
|f(x) − c| + |c − f(t)|

)
dt

≤ lim sup
h→0

|f(x) − c|
|Bh(x)|

∫

Bh(x)

dt + lim sup
h→0

1

|Bh(x)|

∫

Bh(x)

|c − f(t)| dt

= |f(x) − c| + |f(x) − c| (since x /∈ Zc)

< ε + ε = 2ε.

Since ε is arbitrary, equation (5.33) holds for this x. This is true for all x /∈ Z,
so we conclude that equation (5.33) holds for a.e. x. ⊓⊔

Although Theorem 5.5.7 is stated for functions on Rd, it can be applied
to functions whose domain is a subset of Rd. For example, suppose that f is
integrable on some measurable set E ⊆ Rd. Then we can extend the domain
of f to all of Rd by declaring that f(t) = 0 for t /∈ E. If x belongs to the
interior of E, then the open ball Bh(x) is entirely contained in E for all small
enough h. Applying Theorem 5.5.7 to the extended function f, it follows that
equations (5.33) and (5.34) hold for almost every x ∈ E◦.
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5.5.5 Lebesgue Points

The points that satisfy the criterion that appears in equation (5.33) are given
the following special name.

Definition 5.5.8 (Lebesgue Points and the Lebesgue Set). Let f be a
locally integrable function on Rd. If x ∈ Rd satisfies

lim
h→0

1

|Bh(x)|

∫

Bh(x)

|f(x) − f(t)| dt = 0,

then x is called a Lebesgue point of f. The set of all Lebesgue points is the
Lebesgue set of f. ♦

Using this terminology, the Lebesgue Differentiation Theorem implies that
almost every point in the domain of a locally integrable function is a Lebesgue
point. In particular, we saw in Lemma 5.5.1 that every point of continuity is a
Lebesgue point. However, a Lebesgue point need not be a point of continuity.

Next we give a generalization of the Lebesgue Differentiation Theorem
that allows us to average over sets other than the open balls Bh(x). Here are
the specific types of families of sets that we will be allowed to average over.

Definition 5.5.9 (Regularly Shrinking Family). We say that a family
{En}n∈N of measurable subsets of Rd shrinks regularly to a point x ∈ Rd as
n → ∞ if there exists a constant α > 0 and radii rn → 0 such that for each
n ∈ N we have

En ⊆ Brn
(x) and |En| ≥ α |Brn

(x)|. ♦

In other words, in order for {En}n∈N to shrink regularly to x, each set En

must be contained in some ball centered at x and must contain some fixed
fraction of the volume of that ball, although the set En need not contain x
itself.

Now we prove that we can replace averages over balls with averages over
sets in a regularly shrinking family.

Theorem 5.5.10. If f is locally integrable on Rd and {En}n∈N shrinks reg-
ularly to a Lebesgue point x of f, then

lim
n→∞

1

|En|

∫

En

|f(x) − f(t)| dt = 0.

Proof. By the definition of a Lebesgue point and the properties of a regularly
shrinking family, we have that

1

|En|

∫

En

|f(y) − f(x)| dy ≤ 1

α |Brn(x)|

∫

Brn (x)

|f(y) − f(x)| dy

→ 0 as n → ∞. ⊓⊔
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An analogous result holds for families that are indexed by a real parameter.
In particular, we say that a family of sets {Er}r>0 shrinks regularly to x
as r → 0 if there exists some constant α > 0 such that Er ⊆ Br(x) and
|Er| ≥ α |Br(x)| for each r > 0. In this case, if x is a Lebesgue point of f
then

lim
r→0

1

|Er|

∫

Er

|f(x) − f(t)| dt = 0.

Specializing to dimension d = 1 gives us the following result.

Corollary 5.5.11. If f is locally integrable on R and x is a Lebesgue point
of f, then

lim
h→0

1

2h

∫ x+h

x−h

|f(x) − f(t)| dt = 0 (5.38)

and

lim
h→0

1

h

∫ x+h

x

|f(x) − f(t)| dt = 0. (5.39)

Proof. In one dimension, the open ball of radius h centered at x is the open
interval Bh(x) = (x−h, x+h). Therefore equation (5.38) is just a restatement
of equation (5.33). Equation (5.39) is a consequence of Theorem 5.5.10 and
the fact that the family {[x, x + h]}h>0 shrinks regularly to x as h → 0. ⊓⊔

Problems

5.5.12. Give another solution to Problem 4.4.22.

5.5.13. Show that if f is locally integrable on Rd, then f̃h is continuous. Also

show that if f is integrable, then ‖f̃h‖1 ≤ ‖f‖1.

5.5.14. This problem gives a generalization of Theorem 5.5.3. Let g be an
integrable function on Rd that is identically zero outside of some ball of
finite radius and whose integral over Rd is

∫
g = 1. For each h > 0, define

gh(x) = h−dg(x/h). Prove that

lim
h→0

‖f − f ∗ gh‖1 = 0, for all f ∈ L1(Rd).

5.5.15. Prove that the maximal function is sublinear in the sense that if f
and g are any locally integrable functions on Rd and c is any scalar, then

M(f + g) ≤ Mf + Mg and M(cf) = |c|Mf.

5.5.16. Suppose that fn and f are nonnegative locally integrable functions
on Rd, and fn(x) ր f(x) for a.e. x. Prove that Mfn(x) ր Mf(x) for every x.
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5.5.17. Given a locally integrable function f on Rd, define a non-centered
maximal function by

M∗f(x) = sup

{
1

|B|

∫

B

|f | : B is any open ball that contains x

}
.

Prove that Mf ≤ M∗f ≤ 2d Mf.

5.5.18. A useful space that sometimes substitutes for L1 in theorems where
L1 is not appropriate is the set Weak-L1(Rd) that consists of all measurable
functions f on Rd for which there exists a constant C > 0 such that

∣∣{|f | > α}
∣∣ ≤ C

α
for every α > 0.

Prove the following statements.

(a) L1(Rd) ( Weak-L1(Rd).

(b) If f ∈ L1(Rd) then Mf ∈ Weak-L1(Rd).

5.5.19. Let A be any subset of Rd with |A|e > 0. Define the density of A at
a point x ∈ Rd to be

DA(x) = lim
r→0

|A ∩ Br(x)|e
|Br(x)| ,

whenever this limit exists. Prove the following statements.

(a) DA(x) = 1 for a.e. x ∈ A.

(b) A is measurable if and only if DA(x) = 0 for a.e. x /∈ A.

Additionally, exhibit a measurable set E and a point x such that DE(x) does
not exist, and given 0 < α < 1 exhibit a measurable set E and a point x such
that DE(x) = α.

5.5.20. Suppose that E ⊆ [0, 1] is measurable and there exists some δ > 0
such that

∣∣E ∩ [a, b]
∣∣
e
≥ δ (b − a) for all 0 ≤ a < b ≤ 1. Prove that |E| = 1.

5.5.21. Fix 0 < λ < 1, and suppose that f ∈ L1[0, 1] satisfies
∫

E
f = 0 for

every measurable set E ⊆ [0, 1] such that |E| = λ. Prove that f = 0 a.e.

5.5.22. Assume that f is locally integrable, and f is not zero almost every-
where. Prove the following statements.

(a) There exist C, R > 0 such that Mf(x) ≥ C |x|−d for all |x| > R.

(b) Mf is not integrable on Rd.

(c) There exist C ′, α0 > 0 such that

∣∣{Mf > α}
∣∣ ≥ C ′

α
, all 0 < α < α0.

Compare this estimate to the Maximal Theorem.



Chapter 6

Absolute Continuity and the
Fundamental Theorem of Calculus

Every continuous function f : [a, b] → C is measurable, but there are many
ways in which a continuous function can be “badly behaved.” For example,
even though the Cantor–Lebesgue function ϕ is continuous, is differentiable
almost everywhere, is monotone increasing, and maps [0, 1] onto itself, it also
has the following properties:

• it maps a set with measure zero to a set that has positive measure;

• it maps a measurable set to a nonmeasurable set;

• the Fundamental Theorem of Calculus (FTC) does not apply to ϕ;

• ϕ is singular but not constant.

What extra condition must a continuous function satisfy in order that it
not have these unpleasant properties? We will prove in this chapter that the
absolutely continuous functions are precisely those continuous functions that
do not have the types of drawbacks listed above.

We define absolute continuity in Section 6.1. Section 6.2 derives two growth
lemmas, which we use in Section 6.3 to prove the Banach–Zaretsky Theorem.
This key theorem shows that absolute continuity is closely related to the is-
sue of whether a function maps sets with measure zero to sets with measure
zero. In Section 6.4 we use the Lebesgue Differentiation Theorem to charac-
terize the absolutely continuous functions as those functions that satisfy the
FTC. This completes the main goals of the chapter, but two optional sections
provide some additional material. In Section 6.5 we study the relationship
between absolute continuity, the Chain Rule, and changes of variable, while
Section 6.6 introduces convex functions and proves Jensen’s Inequality.

In this chapter the functions we consider will almost exclusively be finite
at every point (in fact, they will usually be bounded). Therefore we will not
need to deal with extended real-valued functions in this chapter; rather we
will focus on real-valued and complex-valued functions.
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6.1 Absolutely Continuous Functions

To motivate the definition of absolute continuity, recall that a function
f : [a, b] → C is uniformly continuous on [a, b] if for every ε > 0 there exists
a δ > 0 such that

|x − y| < δ =⇒ |f(x) − f(y)| < ε.

Absolutely continuous functions satisfy a similar but more stringent require-
ment.

Definition 6.1.1 (Absolutely Continuous Function). We say that a
function f : [a, b] → C is absolutely continuous on [a, b] if for every ε > 0
there exists a δ > 0 such that for any finite or countably infinite collection of
nonoverlapping subintervals

{
[aj , bj ]

}
of [a, b], we have

∑

j

(bj − aj) < δ =⇒
∑

j

|f(bj) − f(aj)| < ε. (6.1)

We denote the class of absolutely continuous functions on [a, b] by

AC[a, b] =
{
f : [a, b] → C : f is absolutely continuous on [a, b]

}
. ♦

Problem 6.1.7 asks for a proof that a complex-valued function is absolutely
continuous if and only if its real and imaginary parts are each absolutely
continuous.

The Cantor–Lebesgue function ϕ is uniformly continuous and has bounded
variation on [0, 1], but we will show that it is not absolutely continuous. The
point is that we can find intervals [aj , bj ] with small total length such that
the sum of |ϕ(bj) − ϕ(aj)| is large.

Example 6.1.2. Let ϕ be the Cantor–Lebesgue function, and set

[a1, b1] = [0, 1
3 ] and [a2, b2] = [23 , 1].

Then
2∑

j=1

(bj − aj) =
2

3
and

2∑

j=1

|ϕ(bj) − ϕ(aj)| = 1.

Using a similar idea, for each n we can find 2n nonoverlapping intervals
[aj , bj ], each of length 3−n, such that ϕ(bj)−ϕ(aj) = 2−n. Therefore, for this
collection

{
[aj , bj ]

}
j=1,...,2n we have

2n∑

j=1

(bj − aj) =

(
2

3

)n

and
2n∑

j=1

|ϕ(bj) − ϕ(aj)| = 1.
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Since we can do this for every n ∈ N, it follows that ϕ is not absolutely
continuous on [0, 1]. ♦

By considering a collection {[c, d]} that contains only a single subinterval
of [a, b], equation (6.1) implies that all absolutely continuous functions are
uniformly continuous. The next lemma gives implications between Lipschitz
continuity, absolute continuity, and bounded variation.

Lemma 6.1.3. (a) Every Lipschitz function on [a, b] is absolutely continuous
on [a, b].

(b) Every absolutely continuous function on [a, b] has bounded variation on
[a, b].

Proof. (a) Suppose that f is Lipschitz on [a, b], and let K be a Lipschitz
constant. Given ε > 0, let δ = ε/K. If {[aj , bj ]}j is any countable collection

of nonoverlapping intervals in [a, b] such that
∑

(bj − aj) < δ, then

∑

j

|f(bj) − f(aj)| ≤ K
∑

j

(bj − aj) ≤ Kδ = ε.

(b) Suppose that f is absolutely continuous on [a, b]. Set ε = 1, and let δ
be the corresponding number whose existence is given in the definition of
absolute continuity. Let [c, d] be any subinterval of [a, b] with length d−c < δ.
If Γ = {c = x0 < · · · < xn = d} is a finite partition of [c, d], then equation
(6.1) implies that

SΓ =
n∑

j=1

|f(xj) − f(xj−1)| < ε = 1.

Taking the supremum over all such partitions of [c, d], we obtain V [f ; c, d] ≤ 1.
Write [a, b] as a union of N nonoverlapping intervals [ck, dk] that each have
length less than δ. Then by applying Lemma 5.2.12 we see that

V [f ; a, b] =

N∑

k=1

V [f ; ck, dk] ≤ N < ∞. ⊓⊔

Example 6.1.2 shows that the implication in part (b) of Lemma 6.1.3 is
not reversible, and the following example shows that the converse of part (a)
does not hold either.

Example 6.1.4. We saw in Lemma 5.2.5 that every function that is differ-
entiable everywhere on [a, b] and has a bounded derivative is Lipschitz. We
cannot prove it yet, but we will see in Corollary 6.3.3 that a function that
is differentiable everywhere on [a, b] and has an integrable derivative is ab-
solutely continuous (this is a consequence of the Banach–Zaretsky Theorem,
see Theorem 6.3.1). Therefore, any differentiable function whose derivative
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is integrable but unbounded will be absolutely continuous but not Lipschitz.
Problem 6.4.19 shows that one specific example is |x|3/2 sin 1

x on the interval
[−1, 1]. ♦

Combining these facts with other inclusions that we obtained in earlier
chapters, we see that

C1[a, b] ( Lip[a, b] ( AC[a, b] ( BV[a, b] ( L∞[a, b] ( L1[a, b].

6.1.1 Differentiability of Absolutely Continuous

Functions

According to Corollary 5.4.3, all functions that have bounded variation are
differentiable a.e. and have integrable derivatives. Since absolutely continuous
functions have bounded variation, we immediately obtain the following result.

Corollary 6.1.5. If f ∈ AC[a, b], then f ′(x) exists for almost every x, and
f ′ ∈ L1[a, b]. ♦

The next lemma answers one of the questions that we posed immediately
after Lemma 5.2.9.

Lemma 6.1.6. If g ∈ L1[a, b], then its indefinite integral

G(x) =

∫ x

a

g(t) dt, x ∈ [a, b],

has the following properties:

(a) G is absolutely continuous on [a, b],

(b) G is differentiable at almost every point of [a, b], and

(c) G′ ∈ L1[a, b].

Proof. Fix any ε > 0. Since g is integrable, Exercise 4.5.5 implies that there
exists a constant δ > 0 such that

∫
E
|g| < ε for every measurable set E with

measure |E| < δ. Let {[aj , bj ]} be a countable collection of nonoverlapping

subintervals of [a, b] that satisfies
∑

(bj − aj) < δ, and set E =
S

(aj , bj).
Then |E| < δ, so

∑

j

|G(bj) − G(aj)| =
∑

j

∣∣∣∣
∫ bj

aj

g

∣∣∣∣ ≤
∑

j

∫ bj

aj

|g| =

∫

E

|g| < ε.

Thus G ∈ AC[a, b]. Finally, the fact that G′ exists a.e. and is integrable is a
consequence of Corollary 6.1.5. ⊓⊔

However, we still cannot say whether G′ equals g! We will address this
issue in Section 6.4 (see Theorem 6.4.2 in particular).
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Problems

6.1.7. Given f : [a, b] → C, write f = fr +ifi where fr and fi are real-valued.
Prove that f ∈ AC[a, b] if and only if fr, fi ∈ AC[a, b].

6.1.8. Prove that if f, g ∈ AC[a, b], then the following statements hold.

(a) |f | ∈ AC[a, b].

(b) αf + βg ∈ AC[a, b] for all α, β ∈ C.

(c) fg ∈ AC[a, b].

(d) If |g(x)| ≥ δ > 0 for all x ∈ [a, b], then f/g ∈ AC[a, b].

6.1.9. Prove that f ∈ AC[a, b] if and only if for every ε > 0 there exists some
δ > 0 such that for every finite collection of nonoverlapping subintervals
{[aj , bj ]}j=1,...,N of [a, b], we have

N∑

j=1

(bj − aj) < δ =⇒
N∑

j=1

|f(bj) − f(aj)| < ε.

6.1.10. (a) Prove that AC[a, b] is a closed subspace of BV[a, b] with respect to
the norm ‖f‖BV defined in Problem 5.2.26. That is, show that if fn ∈ AC[a, b],
f ∈ BV[a, b], and ‖f − fn‖BV → 0, then f ∈ AC[a, b].

(b) Exhibit functions fn and f such that fn ∈ AC[a, b] and fn converges
uniformly to f ∈ BV[a, b], but f /∈ AC[a, b]. Thus the uniform limit of abso-
lutely continuous functions need not be absolutely continuous.

6.1.11. Let E be a measurable subset of Rd with 0 < |E| < ∞ and assume
that f : E → [−∞,∞] is integrable. Define g(x) =

∫
E
|f(t) − x| dt for x ∈ R.

(a) Prove that g is absolutely continuous on every finite interval [a, b], and
g(x) → ∞ as x → ±∞.

(b) Find g′, and prove that g(x) = infy∈R g(y) if and only if
∣∣{f > x}

∣∣ =∣∣{f < x}
∣∣.

6.2 Growth Lemmas

In Section 6.3 we will prove the Banach–Zaretsky Theorem, which gives a
reformulation of absolute continuity that is related to the issue of whether
a function maps sets with measure zero to sets with measure zero. To prove
Banach–Zaretsky we need two lemmas for real-valued functions, which are
quite striking in their own right. These are “growth lemmas” in the sense that
they give an upper bound to the measure of the direct image f(E) in terms
of the function f and the set E. A forerunner of our first lemma appeared
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as Problem 5.2.21, which states that if f is Lipschitz on the entire interval
[a, b] and K is a Lipschitz constant for f, then |f(E)|e ≤ K |E|e for every set
E ⊆ [a, b]. In particular, if f is differentiable on [a, b] and f ′ is bounded on
[a, b], then f is Lipschitz and K = ‖f ′‖∞ is a Lipschitz constant. However,
in order to prove the Banach–Zaretsky Theorem we will need to show that if
f ′ is bounded on a single subset E then the estimate |f(E)|e ≤ K |E|e holds
for that set E (with K = supx∈E |f ′(x)|). We need to obtain this estimate
without assuming that f ′ is bounded on all of [a, b]. We cannot assume that f
is Lipschitz on [a, b], so Problem 5.2.21 is not applicable. Instead, we have
to be more sophisticated in order to obtain the desired estimate. (The first
published proof of Lemma 6.2.1 of which we are aware is the comparatively
“recent” paper of Varberg [Var65], though he comments that this result is “an
elegant inequality which the author discovered lying buried as an innocent
problem in Natanson’s book [Nat55].”)

Lemma 6.2.1 (Growth Lemma I). Let E be any subset of [a, b]. If
f : [a, b] → R is differentiable at every point of E and

ME = sup
x∈E

|f ′(x)| < ∞,

then
|f(E)|e ≤ ME |E|e.

Proof. Choose any ε > 0. If x ∈ E, then

lim
y→x,

y∈[a,b]

|f(x) − f(y)|
|x − y| = |f ′(x)| ≤ ME .

Therefore, there exists an integer nx ∈ N such that

y ∈ [a, b], |x − y| <
1

nx
=⇒ |f(x) − f(y)| ≤ (ME + ε) |x − y|. (6.2)

For each n ∈ N, let
En =

{
x ∈ E : nx ≤ n

}
.

The sets En are nested increasing (E1 ⊆ E2 ⊆ · · · ), and their union is E. We
do not know whether En is a measurable set, but fortunately Problem 2.4.8
tells us that continuity from below holds for exterior Lebesgue measure.
Therefore

|E|e = lim
n→∞

|En|e. (6.3)

The images f(En) are also nested increasing and their union is f(E), so we
likewise have

|f(E)|e = lim
n→∞

|f(En)|e. (6.4)

Fix any particular integer n. By the definition of exterior Lebesgue mea-
sure, there exists a collection of countably many boxes {Ik

n}k such that
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En ⊆ ⋃
k

Ik
n and

∑

k

|Ik
n| ≤ |En|e + ε. (6.5)

Since the boxes Ik
n are subsets of the real line, they are simply closed intervals.

By replacing Ik
n with Ik

n ∩ [a, b], we may assume that Ik
n ⊆ [a, b] for each n

and k. Further, by subdividing if necessary, we may assume that each interval
Ik
n has length less than 1/n.

Suppose that x and y are any two points in En∩Ik
n. Then, since x ∈ En, we

have nx ≤ n. Also, since x and y belong to Ik
n, whose length is less than 1/n,

|x − y| <
1

n
≤ 1

nx
.

It therefore follows from equation (6.2) that

|f(x) − f(y)| ≤ (ME + ε) |x − y| ≤ (ME + ε) |Ik
n|.

Since this is true for all x, y ∈ En ∩ Ik
n, we conclude that

diam
(
f(En ∩ Ik

n)
)

= sup
{
|f(x) − f(y)| : x, y ∈ En ∩ Ik

n

}
≤ (ME + ε) |Ik

n|.

This implies that f(En ∩ Ik
n) is contained in an interval of length at most

(ME + ε) |Ik
n|. Hence

|f(En ∩ Ik
n)|e ≤ (ME + ε) |Ik

n|. (6.6)

Consequently,

|f(En)|e =
∣∣∣
⋃
k

f(En ∩ Ik
n)

∣∣∣
e

(by equation (6.5))

≤
∑

k

|f(En ∩ Ik
n)|e (by subadditivity)

≤ (ME + ε)
∑

k

|Ik
n| (by equation (6.6))

≤ (ME + ε)
(
|En|e + ε

)
(by equation (6.5)).

Therefore, by applying equations (6.3) and (6.4), we see that

|f(E)|e = lim
n→∞

|f(En)|e

≤ (ME + ε) lim
n→∞

(
|En|e + ε

)

= (ME + ε)
(
|E|e + ε

)
.

Since ε is arbitrary, the result follows. ⊓⊔
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One immediate consequence of Lemma 6.2.1 is that if f is differentiable
everywhere on E and f ′ = 0 on E, then |f(E)| = 0. The following lemma
extends this to functions whose derivative is zero almost everywhere on E,
and also proves that the converse statement holds (compare the original proof
of the “⇐” direction that appears in [SV69]).

Corollary 6.2.2. Let f : [a, b] → R and E ⊆ [a, b] be given. If f is differen-
tiable at every point of E, then

f ′ = 0 a.e. on E ⇐⇒ |f(E)| = 0. (6.7)

Proof. ⇒. Suppose that f ′ = 0 a.e. on E, and let E0 = {x ∈ E : f ′(x) = 0}.
Then, by Lemma 6.2.1,

|f(E0)|e ≤ 0 · |E0|e = 0.

On the other hand, if k > 0 then Ek = {x ∈ E : 0 < |f ′(x)| ≤ k} has
measure zero, so Lemma 6.2.1 implies that

|f(Ek)|e ≤ k |Ek|e = 0.

Since E =
S∞

k=0Ek, it follows that |f(E)| = |S∞
k=0 f(Ek)| = 0.

⇐. Assume that |f(E)| = 0. Our goal is to show that

D = {x ∈ E : |f ′(x)| > 0}

has measure zero. For each n ∈ N, let

Dn =

{
x ∈ D :

∣∣∣∣
f(y) − f(x)

y − x

∣∣∣∣ ≥ 1

n
for all y with 0 < |y − x| <

1

n

}
.

If x ∈ D, then f ′(x) exists and is strictly positive. It follows from this that
x ∈ Dn for some n. Therefore D =

S

Dn, so it suffices to show that |Dn| = 0
for every n.

Let n be a fixed positive integer, and let J be any closed subinterval of [a, b]
whose length is less than 1/n. We will show that |Dn ∩J | = 0. To do this, fix
any ε > 0 (and note for later reference that ε is chosen independently of n).
Since |f(E)| = 0, there exist countably many boxes (closed finite intervals)
Qk such that

f(E) ⊆ ⋃
k

Qk and
∑

k

|Qk| < ε.

If we set
Ak = f−1(Qk) ∩ Dn ∩ J,

then Dn ∩ J =
S

kAk.
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Suppose that x and y are two distinct points in Ak. Then x and y belong
to J, so 0 < |y − x| < 1/n. But we also have x, y ∈ Dn, so this implies that

|y − x| ≤ n |f(y) − f(x)|. (6.8)

The preceding equation also holds if x = y. Assuming that Ak is nonempty,
we can therefore estimate its measure as follows:

|Ak|e ≤ diam(Ak)

= sup
{
|y − x| : x, y ∈ Ak

}
(definition of diameter)

≤ sup
{
n |f(y) − f(x)| : x, y ∈ Ak

}
(by equation (6.8))

≤ n sup
{
|w − z| : w, z ∈ Qk

}
(since f(Ak) ⊆ Qk)

= ndiam(Qk) (definition of diameter)

= n |Qk| (since Qk is an interval).

The estimate |Ak|e ≤ n |Qk| also holds if Ak is empty, so we obtain

|Dn ∩ J |e ≤
∑

k

|Ak|e ≤ n
∑

k

|Qk| < nε.

Since ε is arbitrary (and independent of n), we conclude that Dn ∩ J has
measure zero.

Finally, since [a, b] is a finite interval, we can cover it with finitely many
subintervals J1, . . . , Jm that each have length at most 1/n. Our work above
shows that |Dn ∩ Jk| = 0 for each k, so finite subadditivity implies that
|Dn| = 0. ⊓⊔

If we let ϕ be the Cantor–Lebesgue function, then ϕ′ = 0 a.e. on the
Cantor set C, simply because |C| = 0. However, we saw in Example 5.1.4 that
|ϕ(C)| = 1. Therefore, we cannot relax the hypotheses of Corollary 6.2.2 from
“f is differentiable at every point of E” to “f is differentiable at almost every
point of E,” at least for the “⇒” direction of equation (6.7). On the other
hand, the following corollary shows that we can allow this generalization in
the “⇐” direction.

Corollary 6.2.3. Fix E ⊆ [a, b]. If f : [a, b] → R is differentiable a.e. on E
and |f(E)| = 0, then f ′ = 0 a.e. on E.

Proof. Let A = {x ∈ E : f ′(x) exists}. Then Z = E\A has measure zero, and
|f(A)| ≤ |f(E)| = 0. Since f is differentiable at every point of A, Corollary
6.2.2 implies that f ′ = 0 a.e. on A. Since |Z| = 0, it follows that f ′ = 0 a.e.
on E = A ∪ Z. ⊓⊔

Corollary 6.2.3 will be useful to us in Section 6.5, when we consider the
Chain Rule in connection with absolutely continuous functions.
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Our second growth lemma (which also appears to have been first proved
in [Var65]) relates the exterior measure of f(E) to the integral of |f ′| on E.
As we have observed before, a measurable function need not map measurable
sets to measurable sets. Therefore, even though we assume in this lemma
that the set E and the function f are measurable, the image f(E) might not
be measurable.

Lemma 6.2.4 (Growth Lemma II). Assume that f : [a, b] → R is mea-
surable. If E is a measurable subset of [a, b] and f is differentiable at every
point of E, then

|f(E)|e ≤
∫

E

|f ′|.

Proof. By Problem 3.2.19, the derivative f ′ : E → R is a measurable function
on E. Hence

∫
E

|f ′| exists as a nonnegative, extended real number.
Fix any ε > 0, and for each k ∈ N define

Ek =
{
x ∈ E : (k − 1)ε ≤ |f ′(x)| < kε

}
.

The sets Ek are measurable and disjoint, and since f is differentiable every-
where on E we have E =

S

Ek. Since Lebesgue measure is countably additive,
it follows that

|E| =

∞∑

k=1

|Ek|.

Lemma 6.2.1 implies that |f(Ek)|e ≤ kε |Ek|, so we see that

|f(E)|e =

∣∣∣∣
∞⋃

k=1

f(Ek)

∣∣∣∣
e

≤
∞∑

k=1

|f(Ek)|e

≤
∞∑

k=1

kε |Ek|

=

∞∑

k=1

(k − 1)ε |Ek| +

∞∑

k=1

ε |Ek|

≤
∞∑

k=1

∫

Ek

|f ′| + ε |E|

=

∫

E

|f ′| + ε |E|.

Since ε is arbitrary and |E| < ∞, the result follows. ⊓⊔
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Problems

6.2.5. Suppose that f : [a, b] → C is differentiable at every point of E ⊆ [a, b].
Prove that f ′ = 0 a.e. on any subset of E where f is constant.

6.2.6. Suppose that f : [a, b] → R is differentiable a.e. on a measurable set
E ⊆ [a, b]. Prove that if f ∈ AC[a, b], then

|f(E)|e ≤
∫

E

|f ′|.

Show by example that the assumption of absolute continuity is necessary.

6.3 The Banach–Zaretsky Theorem

In this section we will prove the Banach–Zaretsky Theorem, which tells us
what properties that a function f : [a, b] → R needs to possess in addition to
continuity in order to be absolutely continuous. Specifically, f must map sets
with measure zero to sets with measure zero, and we must also know either
that f has bounded variation, or that f is differentiable almost everywhere
and f ′ is integrable. The result is similar for complex-valued functions, except
that both the real and imaginary parts of f must map sets of measure zero
to sets of measure zero (compare Problem 6.3.5).

Theorem 6.3.1 (Banach–Zaretsky Theorem). If f : [a, b] → R is a real-
valued function on [a, b], then the following three statements are equivalent.

(a) f ∈ AC[a, b].

(b) f is continuous, f ∈ BV[a, b], and

A ⊆ [a, b], |A| = 0 =⇒ |f(A)| = 0.

(c) f is continuous, f is differentiable a.e., f ′ ∈ L1[a, b], and

A ⊆ [a, b], |A| = 0 =⇒ |f(A)| = 0.

If f : [a, b] → C is a complex-valued function and we write f = fr + ifi

where fr and fi are real-valued, then the same three statements are equivalent
if we replace “|f(A)| = 0” by “|fr(A)| = |fi(A)| = 0.”

Proof. Since we can split a complex-valued function into real and imaginary
parts, it suffices to prove the result for real-valued functions.

(a) ⇒ (b). Every absolutely continuous function is continuous and has
bounded variation, so our task is to show that f maps sets with measure zero
to sets with measure zero.
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Suppose that A is a subset of [a, b] that has measure zero. Since the two-
element set {a, b} has measure zero and its image {f(a), f(b)} also has mea-
sure zero, it suffices to assume that A is contained within the open interval
(a, b). Fix ε > 0. By the definition of absolute continuity, there exists some
δ > 0 such that if

{
[aj , bj ]

}
is any countable collection of nonoverlapping

subintervals of [a, b] that satisfy
∑

(bj − aj) < δ, then
∑ |f(bj)− f(aj)| < ε.

By Theorem 2.1.27, there is an open set U ⊇ A whose measure satisfies

|U | < |A| + δ = δ.

By replacing U with the open set U ∩ (a, b), we may assume that U ⊆ (a, b).
Since U is open, we can write it as a union of countably many disjoint open
intervals contained in (a, b), say

U =
⋃
j

(aj , bj).

Fix any particular j. Since f is continuous on the closed interval [aj , bj ],

there is a point in [aj , bj ] where f attains its minimum value on [aj , bj ], and

another point where f attains its maximum. Let cj and dj be points in [aj , bj ]
such that f has a max at one point and a min at the other. By interchanging
their roles if necessary, we may assume that cj ≤ dj . Because f is continuous,
the Intermediate Value Theorem implies that the image of [aj , bj ] under f is

the set of all points between f(cj) and f(dj). Hence the exterior Lebesgue
measure of this image is

∣∣f([aj , bj ])
∣∣
e

= |f(dj) − f(cj)|.

Now, [cj , dj ] ⊆ [aj , bj ], so
{
[cj , dj ]

}
is a collection of nonoverlapping subin-

tervals of [a, b]. Moreover,

∑

j

|dj − cj | ≤
∑

j

(bj − aj) = |U | < δ.

Therefore
∑ |f(dj) − f(cj)| < ε, so

|f(A)|e ≤ |f(U)|e ≤
∑

j

∣∣f([aj , bj ])
∣∣
e

=
∑

j

∣∣f(dj) − f(cj)
∣∣ < ε.

Since ε is arbitrary, we conclude that |f(A)| = 0.

(b) ⇒ (c). This follows from Corollary 5.4.3.

(c) ⇒ (a). Assume that f is real-valued and statement (c) holds. Let D be
the set of points where f is differentiable. By hypothesis, Z = [a, b]\D has
measure zero, so D = [a, b]\Z is a measurable set.

Let [c, d] be an arbitrary subinterval of [a, b]. Since f is continuous, the
Intermediate Value Theorem implies that f must take every value between
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f(c) and f(d). Therefore f([c, d]), the image of [c, d] under f, must contain

an interval of length |f(d) − f(c)|. Define

B = [c, d] ∩ D and A = [c, d]\D.

The set A has measure zero, so |f(A)| = 0 by hypothesis. Since f is differen-
tiable at every point of B, we therefore compute that

|f(d) − f(c)| ≤
∣∣f([c, d])

∣∣
e

=
∣∣f(B) ∪ f(A)

∣∣
e

(since [c, d] = B ∪ A)

≤ |f(B)|e + |f(A)|e (by subadditivity)

≤
∫

B

|f ′| + 0 (by Lemma 6.2.4)

≤
∫ d

c

|f ′| (since B ⊆ [c, d]). (6.9)

This calculation holds for every subinterval [c, d] of [a, b].
Now fix ε > 0. Because f ′ is integrable, Exercise 4.5.5 implies that there

is some constant δ > 0 such that for every measurable set E ⊆ [a, b] we have

|E| < δ =⇒
∫

E

|f ′| < ε.

Let
{
[aj , bj ]

}
be any countable collection of nonoverlapping subintervals of

[a, b] such that
∑

(bj −aj) < δ. Then E =
S

[aj , bj ] is a measurable subset of

[a, b] and |E| < δ, so
∫

E
|f ′| < ε. Applying equation (6.9) to each subinterval

[aj , bj ], it follows that

∑

j

∣∣f(bj) − f(aj)
∣∣ ≤

∑

j

∫ bj

aj

|f ′| =

∫

E

|f ′| < ε.

Hence f is absolutely continuous on [a, b]. ⊓⊔

We will give several implications of the Banach–Zaretsky Theorem. Our
first corollary shows that absolutely continuous functions preserve measura-
bility.

Corollary 6.3.2. Absolutely continuous functions map sets of measure zero
to sets of measure zero, and they map measurable sets to measurable sets.

Proof. Assume that f is absolutely continuous. If f is real-valued, then the
Banach–Zaretsky Theorem directly implies that f maps sets of measure zero
to sets of measure zero. On the other hand, if f is complex-valued then the
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Banach–Zaretsky Theorem tells us that both the real and imaginary parts of
f map sets of measure zero to sets of measure zero. Applying Problem 6.3.5,
it follows that f maps sets of measure zero to sets of measure zero. In either
case, we can apply Lemma 2.3.9 and conclude that f also maps measurable
sets to measurable sets. ⊓⊔

To motivate our second implication, recall from Lemma 5.2.5 that if f
is differentiable everywhere on [a, b] and f ′ is bounded, then f is Lipschitz
and therefore absolutely continuous. What happens if f is differentiable ev-
erywhere on [a, b] but we only know that f ′ is integrable? Although such a
function need not be Lipschitz, the next corollary shows that f is absolutely
continuous.

Corollary 6.3.3. If f : [a, b] → C is differentiable everywhere on [a, b] and
f ′ ∈ L1[a, b], then f ∈ AC[a, b].

Proof. We may assume that f is real-valued. Let A be any subset of [a, b]
that has measure zero. Since f is differentiable everywhere, it is continuous
and hence measurable. Becuase A is a measurable set, we can therefore apply
Lemma 6.2.4 to obtain the estimate

|f(A)|e ≤
∫

A

|f ′| = 0.

Consequently, the Banach–Zaretsky Theorem implies that f is absolutely
continuous. ⊓⊔

Problem 6.3.8 gives a generalization of Corollary 6.3.3: If f is differentiable
at all but countably many points and f ′ ∈ L1[a, b], then f ∈ AC[a, b]. As
shown by the Cantor–Lebesgue function, we cannot weaken this hypothesis
further to just differentiability almost everywhere.

We also cannot remove the hypothesis in Corollary 6.3.3 that f ′ is inte-
grable. For example, Problem 6.3.12 shows that

g(x) = x2 sin 1

x2

is differentiable everywhere on [−1, 1], but g′ is not integrable and g does
not even have bounded variation on [−1, 1], so g is certainly not absolutely
continuous.

Our final implication uses the Banach–Zaretsky Theorem to show that the
only functions that are both absolutely continuous and singular are constant
functions.

Corollary 6.3.4 (AC + Singular Implies Constant). If f : [a, b] → C is
both absolutely continuous and singular, then f is constant.

Proof. It suffices to assume that f is real-valued. Suppose that f ∈ AC[a, b]
and f ′ = 0 a.e., and define
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E =
{
f ′ = 0

}
and Z = [a, b]\E.

Since |Z| = 0, the Banach–Zaretsky Theorem implies that |f(Z)| = 0. Since E
is measurable and f is differentiable on E, Lemma 6.2.4 implies that

|f(E)|e ≤
∫

E

|f ′| = 0.

Therefore the range of f has measure zero, because

|range(f)|e =
∣∣f([a, b])

∣∣
e

= |f(E) ∪ f(Z)|e ≤ |f(E)|e + |f(Z)|e = 0.

However, f is continuous and [a, b] is compact, so the Intermediate Value
Theorem implies that the range of f is a either single point or a closed
interval [c, d]. Since range(f) has measure zero, we conclude that it is a single
point, and therefore f is constant. ⊓⊔

Problems

6.3.5. Define Lebesgue measure on the complex plane by identifying C with
R2 in the natural way. Given f : X → C, write f = fr + ifi where fr and
fi are real-valued. Prove that if |fr(X)| = |fi(X)| = 0, then |f(X)| = 0, but
show by example that the converse implication can fail.

6.3.6. Assume that g : [a, b] → [c, d] and f : [c, d] → C are continuous. Prove
the following statements (compare Problems 5.2.20 and 6.3.7).

(a) If f is Lipschitz and g ∈ AC[a, b], then f ◦ g ∈ AC[a, b].

(b) If f ∈ AC[c, d], g ∈ AC[a, b], and g is monotone increasing on [a, b],
then f ◦ g ∈ AC[a, b].

(c) If f ∈ AC[c, d] and g ∈ AC[a, b], then

f ◦ g ∈ AC[a, b] ⇐⇒ f ◦ g ∈ BV[a, b].

Remark: This problem will be used in the proof of Corollary 6.5.8.

6.3.7. Prove the following statements (compare Problem 6.3.6).

(a) f(x) = x1/2 is monotone increasing and absolutely continuous on [0, 1]
and g(t) = t2 sin2 1

t is Lipschitz on [0, 1], yet f ◦g is not absolutely continuous.

(b) f(x) = x2 is monotone increasing and absolutely continuous on [0, 1]
and g(t) = t sin 1

t is not absolutely continuous on [0, 1], yet f ◦ g is absolutely
continuous on [0, 1].

6.3.8. Suppose that f : [a, b] → C is continuous, f is differentiable at all but
countably many points of [a, b], and f ′ ∈ L1[a, b]. Prove that f ∈ AC[a, b].
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6.3.9. Assume that f ∈ AC[a, b] and there is a continuous function g such
that f ′ = g a.e. Prove that f is differentiable everywhere on [a, b] and f ′(x) =
g(x) for every x ∈ [a, b]. Show by example that the hypothesis of absolute
continuity is necessary.

6.3.10. Suppose that f : [a, b] → C is differentiable everywhere on [a, b].
Prove the following statements.

(a) f ∈ AC[a, b] if and only if f ∈ BV[a, b].

(b) f ′ = 0 a.e. if and only if f is constant on [a, b].

6.3.11. (a) Suppose that f ∈ BV[a, b], f is continuous from the right at
x = a, and f ∈ AC[a + δ, b] for each δ > 0. Prove that f ∈ AC[a, b].

(b) Show by example that the assumption in part (a) that f has bounded
variation is necessary.

6.3.12. Define g(x) = x2 sin(1/x2) for x 6= 0, and set g(0) = 0. Show that
g ∈ L1[−1, 1], g is differentiable everywhere on [−1, 1], g′ /∈ L1[−1, 1], g /∈
BV[−1, 1], and g /∈ AC[−1, 1].

Remark: This is a special case of Problem 6.3.13, but it may be instructive
to work it first.

6.3.13. Fix a, b > 0 and define f(x) = |x|a sin |x|−b for x 6= 0 and f(0) = 0.
According to Problem 5.2.22, f belongs to BV[−1, 1] if and only if a > b.
Prove that f ∈ AC[−1, 1] if and only if a > b.

6.4 The Fundamental Theorem of Calculus

Following Lemma 5.2.9, we asked two questions: First, is the indefinite inte-
gral G of an integrable function g differentiable? Second, if G is differentiable,
does G′ = g? The first question was answered affirmatively in Lemma 6.1.6,
and the next lemma will show that G′ = g a.e.

Lemma 6.4.1. If g ∈ L1[a, b], then its indefinite integral

G(x) =

∫ x

a

g(t) dt, x ∈ [a, b],

is absolutely continuous and satisfies G′ = g a.e.

Proof. Because G is the indefinite integral of an integrable function, Lemma
6.1.6 implies that G is absolutely continuous. Applying Corollary 5.5.11 (ex-
tend g by zero outside of [a, b], so that it is locally integrable on R), we also
see that if x ∈ [a, b] is a Lebesgue point of g then

G(x + h) − G(x)

h
=

1

h

∫ x+h

x

g(t) dt → g(x) as h → 0.
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Therefore G is differentiable at x and G′(x) = g(x). Since almost every point
is a Lebesgue point, we conclude that G′ = g a.e. ⊓⊔

Now we tie everything together and prove that the absolutely continuous
functions are precisely those for which the Fundamental Theorem of Calculus
holds.

Theorem 6.4.2 (Fundamental Theorem of Calculus). If f : [a, b] → C,
then the following three statements are equivalent.

(a) f ∈ AC[a, b].

(b) There exists a function g ∈ L1[a, b] such that

f(x) − f(a) =

∫ x

a

g(t) dt, for all x ∈ [a, b].

(c) f is differentiable almost everywhere on [a, b], f ′ ∈ L1[a, b], and

f(x) − f(a) =

∫ x

a

f ′(t) dt, for all x ∈ [a, b].

Proof. (a) ⇒ (c). Suppose that f is absolutely continuous on [a, b]. Corollary
6.1.5 implies that f ′ exists a.e. and is integrable. It therefore follows from
Lemma 6.4.1 that the indefinite integral

F (x) =

∫ x

a

f ′(t) dt

is absolutely continuous and satisfies F ′ = f ′ a.e. Hence (F − f)′ = 0 a.e.,
so the function F − f is both absolutely continuous and singular. Applying
Corollary 6.3.4, we conclude that F − f is constant. Consequently, for all
x ∈ [a, b] we have

F (x) − f(x) = F (a) − f(a) = 0 − f(a) = −f(a).

(c) ⇒ (b). This follows by taking g = f ′.

(b) ⇒ (a). This follows from Lemma 6.4.1. ⊓⊔

Combining Theorem 6.4.2 with the Banach–Zaretsky Theorem gives us
a remarkable list of equivalent characterizations of absolute continuity of
functions on [a, b].

6.4.1 Applications of the FTC

We will give several implications of the Fundamental Theorem of Calculus.
First, we use the FTC to prove that every function that has bounded variation
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can be written as the sum of an absolutely continuous function and a singular
function.

Corollary 6.4.3. If f ∈ BV[a, b], then f = g +h where g ∈ AC[a, b] and h is
singular on [a, b]. Moreover, g and h are unique up to an additive constant,
and we can take

g(x) =

∫ x

a

f ′(t) dt, for x ∈ [a, b]. (6.10)

Proof. Since f has bounded variation on [a, b], we know that f ′ exists a.e.
and is integrable. Therefore the function g given by equation (6.10) is well-
defined. Further, g ∈ AC[a, b] and g′ = f ′ a.e. by Lemma 6.4.1. Consequently
f and g are each differentiable a.e., and h = f −g satisfies h′ = 0 a.e. Hence g
is absolutely continuous and h is singular.

Suppose that we also had f = g1 + h1 where g1 is absolutely continuous
and h1 is singular. Then g − g1 = h1 − h, which implies that g − g1 is both
absolutely continuous and singular. Hence g− g1 is a constant, and therefore
h1 − h is the same constant. ⊓⊔

Our second application of the Fundamental Theorem of Calculus relates
the total variation of an absolutely continuous function f to the integral
of |f ′|. The special case where f belongs to C1[a, b] appeared earlier in Prob-
lem 5.2.27.

Theorem 6.4.4. If f ∈ AC[a, b], then

V [f ; a, b] =

∫ b

a

|f ′|. (6.11)

Proof. Since f has bounded variation, the inequality
∫ b

a
|f ′| ≤ V [f ; a, b] fol-

lows immediately from Corollary 5.4.3.
To prove the opposite inequality, we make use of the fact that f is abso-

lutely continuous. The Fundamental Theorem of Calculus tells us that f ′ is
integrable and

f(x) − f(a) =

∫ x

a

f ′, for all x ∈ [a, b].

Define

F (x) =

∫ x

a

f ′ = f(x) − f(a), for x ∈ [a, b].

Applying Lemma 5.2.9, we see that

V [F ; a, b] ≤
∫ b

a

|f ′|.

But f and F only differ by a constant, so they have the same total variation.

Therefore V [f ; a, b] = V [F ; a, b] ≤
∫ b

a
|f ′|. ⊓⊔
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As a corollary, we will show that if f is absolutely continuous, then its total
variation function is also absolutely continuous (for the converse implication,
see Problem 6.4.18).

Corollary 6.4.5. Choose f ∈ AC[a, b], and let V (x) = V [f ; a, x] be the total
variation of f on the interval [a, x]. Then the following statements hold.

(a) V ∈ AC[a, b].

(b) V (x) =
∫ x

a
|f ′| for each x ∈ [a, b].

(c) V ′ = |f ′| a.e.

Proof. Applying Theorem 6.4.4 to f on the interval [a, x], we see that V (x) =∫ x

a
|f ′|. Since |f ′| ∈ L1[a, b], the Fundamental Theorem of Calculus therefore

implies that V is absolutely continuous and V ′ = |f ′| almost everywhere. ⊓⊔

Even though V ′ = |f ′| a.e., the set of points where V ′(x) exists can be
different than the set of points where |f ′(x)| exists (consider f(x) = |x| on
the interval [−1, 1]).

6.4.2 Integration by Parts

As another application of the Fundamental Theorem of Calculus, we prove
that integration by parts is valid for absolutely continuous functions.

Theorem 6.4.6 (Integration by Parts). If f and g are absolutely contin-
uous on [a, b], then

∫ b

a

f(x) g′(x) dx = f(b) g(b) − f(a) g(a) −
∫ b

a

f ′(x) g(x) dx. (6.12)

Proof. The product F = fg is absolutely continuous by Problem 6.1.8, so F
is differentiable at almost every point. At any point t where f and g are both
differentiable (which is a.e.), the product rule applies and we have

F ′(t) = f(t) g′(t) + f ′(t) g(t).

Since f ′ and g′ are integrable and f and g are bounded, we know that fg′ and
f ′g are each integrable. Applying the Fundamental Theorem of Calculus to
the absolutely continuous function F, it follows that for each point x ∈ [a, b]
we have

∫ x

a

f(t) g′(t) dt +

∫ x

a

f ′(t) g(t) dt =

∫ x

a

F ′(t) dt = F (x) − F (a).

Rearranging, substituting F = fg, and taking x = b, we obtain equation
(6.12). ⊓⊔
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We will use integration by parts to prove the following theorem (also com-
pare Problems 7.4.5 and 9.1.32).

Theorem 6.4.7. If f ∈ L1[a, b] satisfies

∫ b

a

f(x) g(x) dx = 0, for all g ∈ C[a, b], (6.13)

then f = 0 a.e.

Proof. Before beginning the proof, we observe that if we were allowed to take
g ∈ L∞[a, b] in equation (6.13) instead of g ∈ C[a, b], then the proof would
be easy, because we could choose g so that |g(x)| = 1 and f(x) g(x) = |f(x)|.
Unfortunately, such a function g need not be continuous, so we must be more
careful.

Let F (x) =
∫ x

a
f for x ∈ [a, b]. Then F (a) = 0, and also F (b) = 0 since

the constant function 1 belongs to C[a, b]. Since F is continuous, the Weier-
strass Approximation Theorem (Theorem 1.3.4) implies that there exists a
polynomial p such that ‖F − p‖u < ε. Set P (x) =

∫ x

a
p(t) dt. Then P is itself

a polynomial, and by using integration by parts we see that

∫ b

a

F (x) p(x) dx = F (b)P (b) − F (a)P (a) −
∫ b

a

f(x)P (x) dx = 0.

Therefore

∫ b

a

|F − p|2 dx =

∫ b

a

|F |2 − 2Re

∫ b

a

F p +

∫ b

a

|p|2.

Since
∫ b

a
F p = 0 and

∫ b

a
|p|2 ≥ 0, it follows that

∫ b

a

|F |2 ≤
∫ b

a

|F − p|2 dx ≤
∫ b

a

‖F − p‖2
u dx < ε2 (b − a).

But ε is arbitrary and F is continuous, so this implies that F = 0 and
therefore F ′ = 0. However, f = F ′ a.e. by the Fundamental Theorem of
Calculus, so the result follows. ⊓⊔

Problems

6.4.8. Show that xα ∈ AC[a, b] for each α > 0 and 0 ≤ a < b < ∞.

6.4.9. Exhibit functions f ∈ BV[a, b] and g ∈ C∞[a, b] for which the integra-
tion by parts formula given in equation (6.12) fails.
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6.4.10. Show that f : [a, b] → C is Lipschitz if and only if f ∈ AC[a, b] and
f ′ ∈ L∞[a, b].

6.4.11. Let P ⊆ [0, 1] be a “fat Cantor set” with positive measure, of the
type constructed in Problem 2.2.42. Set U = [0, 1]\P, and define

f(x) =

∫ x

0

χU (t) dt, for x ∈ [0, 1].

Show that f is absolutely continuous and strictly increasing on [0, 1], yet
f ′ = 0 on a set that has positive measure.

6.4.12. Suppose that f : [a, b] → R is differentiable a.e. on [a, b] and f ′ ≥ 0
a.e. Must f be monotone increasing on [a, b]? What if we also assume that f
is absolutely continuous?

6.4.13. Suppose that f ∈ L1(R) is such that f ′ ∈ L1(R) and f ∈ AC[a, b] for

every finite interval [a, b]. Show that lim|x|→∞ f(x) = 0 =
∫ ∞

−∞
f ′.

6.4.14. Suppose that functions fn ∈ C1[0, 1] satisfy:

(a) fn(0) = 0,

(b) |f ′
n(x)| ≤ x−1/2 a.e., and

(c) there is a measurable function h such that f ′
n(x) → h(x) for x ∈ [0, 1].

Prove that there exists an absolutely continuous function f such that fn

converges uniformly to f as n → ∞.

6.4.15. Given f : [0, 1] → R, prove that the following two statements are
equivalent.

(a) f ∈ AC[0, 1], f(0) = 0, and f ′(x) is either 0 or 1 for almost every x.

(b) There is a measurable set A ⊆ [0, 1] such that f(x) = |A ∩ [0, x]| for
all x ∈ [0, 1].

6.4.16. Suppose that f ∈ AC[a, b] satisfies f(a) = 0. Show that

∫ b

a

|f(x) f ′(x)| dx ≤ 1

2

(∫ b

a

|f ′(x)| dx

)2

.

6.4.17. (a) Suppose that f ∈ BV[a, b] is continuous and real-valued, f ′ is
integrable on [a, b], and

∫ b

a

f ′ = f(b) − f(a).

Must f be absolutely continuous? What if f is monotone increasing on [a, b]?

(b) Suppose that g : [a, b] → [c, d] is a monotone increasing function that
maps [a, b] onto [c, d]. Let A be the set of points where g is not differentiable.
Prove that g ∈ AC[a, b] if and only if |g(A)| = 0.
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6.4.18. Fix f ∈ BV[a, b], and let V (x) = V [f ; a, x] for x ∈ [a, b]. Prove that
the following three statements are equivalent.

(a) f ∈ AC[a, b].

(b) V ∈ AC[a, b].

(c)
∫ b

a
|f ′| = V [f ; a, b].

Also prove that if the above statements hold, then the positive and nega-
tive variations V +(x) = V +[f ; a, x] and V −(x) = V −[f ; a, x] are absolutely

continuous, V +(x) =
∫ x

a
(f ′)+, and V −(x) =

∫ x

a
(f ′)−.

6.4.19. Define f(x) = |x|3/2 sin 1
x for x 6= 0, and set f(0) = 0. Prove the

following facts.

(a) f is differentiable at every point,

(b) f ′ ∈ L1[−1, 1] \ L∞[−1, 1],

(c) f ∈ AC[−1, 1] \ Lip[−1, 1].

Remark: This is a special case of both Problems 6.3.13 and 6.4.20, but it may
be instructive to work it first.

6.4.20. Fix a, b > 0 and define f(x) = |x|a sin |x|−b for x 6= 0 and f(0) = 0.
According to Problem 6.3.13, f belongs to AC[−1, 1] if and only if a > b.
Prove the following statements.

(a) f is differentiable everywhere on [−1, 1] if and only if a > 1.

(b) f ∈ Lip[−1, 1] if and only if a ≥ b + 1.

(c) f ∈ C1[−1, 1] if and only if a > b + 1.

6.4.21. (a) Given f ∈ L1[a, b] and ε > 0, prove that there exists a polynomial
p(x) =

∑n
k=0 akxk such that ‖f − p‖1 < ε.

(b) Suppose that f ∈ L1[a, b] satisfies
∫ b

a
f(x)xk dx = 0 for all k ≥ 0.

Prove that f = 0 a.e.

(c) Suppose that f ∈ L1[0, 1] is such that
∫ 1

0
f(x)x2k dx = 0 for all k ≥ 0.

Prove that f = 0 a.e.

6.4.22.* Suppose that f is monotone increasing on [a, b]. Prove the following
statements.

(a) If we set f(a+) = limx→a+ f(x) and f(b−) = limx→b− f(x), then

∫ b

a

f ′ ≤ f(b−) − f(a+).

(b) f = g + h where g ∈ AC[a, b], h′ = 0 a.e., and both g and h are
monotone increasing.

(c) If I is an interval contained in [f(a), f(b)], then f−1(I) is either an
interval, a single point, or empty. Further, |g(f−1(I))| ≤ |I|.
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(d) If A is a measurable subset of [a, b], then |g(A)| ≤ |f(A)|e.

(e) If E =
{
x ∈ [a, b] : f is differentiable at x

}
, then

∫ b

a
f ′ = |f(E)|e.

(f)
∫

A
g′ = |g(A)| = |g(A ∩ E)| for all measurable A ⊆ [a, b].

(g)
∫

A
f ′ = |f(A ∩ E)|e ≤ |f(A)|e for all measurable A ⊆ [a, b].

6.5 The Chain Rule and Changes of Variable

For functions that are differentiable at a point, we have the following funda-
mental result (for a proof, see [Rud76, Thm. 5.5] or [BS11, Thm. 6.1.6]).

Theorem 6.5.1 (Chain Rule). Let g : [a, b] → [c, d] and F : [c, d] → C be
given. If g is differentiable at t0 ∈ [a, b], and F is differentiable at g(t0), then
F ◦ g is differentiable at t0 and

(F ◦ g)′(t0) = F ′(g(t0)) g′(t0). ♦

As a corollary, if g and F are both differentiable everywhere on their
domains, then F ◦ g is differentiable everywhere on [a, b]. The situation is
more complicated if there are points where g or F are not differentiable. Let
Zg be the set of points in [a, b] where g is not differentiable and let ZF be
the set of points in [c, d] where F is not differentiable. Then F ◦ g will be
differentiable for all t that do not belong to

Zg ∪ g−1(ZF ) =
{
t ∈ [a, b] : g′(t) does not exist or F ′(g(t)) does not exist

}
.

Unfortunately, even if Zg and ZF both have measure zero, it need not be
the case that g−1(ZF ) has measure zero, even if g is absolutely continuous.
Therefore, in general we have the unpleasant fact that

F and g both differentiable a.e. =⇒/ F ◦ g is differentiable a.e.

This makes the Chain Rule for functions that are only differentiable almost
everywhere a more subtle matter than it is for functions that are differentiable
everywhere. The following theorem, from [SV69], whose proof makes clever
use of Corollary 6.2.3, gives us a fairly general version of the Chain Rule as
long as we assume in the hypotheses that F ◦g is differentiable a.e. After the
theorem, we will derive several corollaries that do not require us to assume
differentiability of F ◦ g.

Theorem 6.5.2 (Chain Rule). Assume that:

(a) g : [a, b] → [c, d] is differentiable a.e. on [a, b],

(b) F : [c, d] → C is differentiable a.e. on [c, d],
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(c) F ◦ g : [a, b] → C is differentiable a.e. on [a, b], and

(d) if Z ⊆ [c, d] satisfies |Z| = 0, then |F (Z)| = 0.

Let h : [c, d] → C be any function such that h = F ′ a.e. Then

(F ◦ g)′ = (h ◦ g) g′ a.e. (6.14)

Proof. Since we can deal with the complex case by splitting F into real and
imaginary parts, it suffices to assume that F is real-valued.

Let Zg be the set of points in [a, b] where g is not differentiable. Let
ZF be the set of all points x ∈ [c, d] where either F ′(x) does not exist or
h(x) 6= F ′(x). By hypothesis, |Zg| = 0 and |ZF | = 0. Define

B = g−1(ZF ) and A = Zg ∪ B.

If t /∈ A, then g is differentiable at t, F is differentiable at g(t), and
h(g(t)) = F ′(g(t)). Applying the pointwise Chain Rule (Theorem 6.5.1), it
follows that F ◦ g is differentiable at t and

(F ◦ g)′(t) = F ′(g(t)) g′(t) = h(g(t)) g′(t). (6.15)

Now, g is differentiable a.e., so in particular it is differentiable at almost
every point of B. Further,

g(B) = g(g−1(ZF )) ⊆ ZF ,

so |g(B)| = 0. Corollary 6.2.3 therefore implies that g′ = 0 a.e. on B. Since
Zg has measure zero, it follows that g′ = 0 a.e. on A = Zg ∪ B.

Since |g(B)| = 0 and F maps sets with measure zero to sets with measure
zero, we have |F (g(B))| = 0. By hypothesis, F ◦ g is differentiable a.e., so if
we apply Corollary 6.2.3 to F ◦ g then we see that (F ◦ g)′ = 0 a.e. on B,
and therefore (F ◦ g)′ = 0 a.e. on A = Zg ∪ B. Consequently, for a.e. t ∈ A
we have

(F ◦ g)′(t) = 0 = h(g(t)) g′(t). (6.16)

Finally, since equation (6.15) holds for all t /∈ A and equation (6.16) holds
for a.e. t ∈ A, we obtain equation (6.14). ⊓⊔

Remark 6.5.3. If F : [c, d] → C is absolutely continuous, then hypotheses (b)
and (d) of Theorem 6.5.2 are automatically satisfied. ♦

Looking at the proof of Theorem 6.5.2, we can see that a considerable
simplification is possible if it so happens that the set A = Zg ∪ g−1(ZF ) has
measure zero. Our first corollary makes this precise.

Corollary 6.5.4. If g : [a, b] → [c, d] is differentiable a.e., F : [c, d] → C is
differentiable a.e., and g′(t) 6= 0 for a.e. t, then F ◦ g is differentiable a.e.
and equation (6.15) holds for any function h that satisfies h = F ′ a.e.
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Proof. Repeating the proof of Theorem 6.5.2, we see that equation (6.15)
holds for all t that do not belong to the set A, and g′ = 0 a.e. on A. Since we
are now assuming that g′(t) 6= 0 for a.e. t, it follows that |A| = 0. Therefore
equation (6.15) holds for almost every t. ⊓⊔

Our second corollary gives two sufficient conditions under which the hy-
potheses of Theorem 6.5.2 will be satisfied.

Corollary 6.5.5. Let g : [a, b] → [c, d] and F : [c, d] → C be given. If either:

(a) F is absolutely continuous and g is monotone increasing, or

(b) F is Lipschitz and g has bounded variation,

then F ◦ g is differentiable a.e. and equation (6.15) holds for any function h
that satisfies h = F ′ a.e.

Proof. Using either of the hypotheses in statements (a) or (b), it follows
from Problem 5.2.20 that F ◦ g has bounded variation and consequently is
differentiable a.e. Since either statement (a) or (b) implies that F is absolutely
continuous, all of the hypotheses of Theorem 6.5.2 are satisfied and the result
follows. ⊓⊔

By integrating the Chain Rule, we obtain the following general change of
variables formula.

Theorem 6.5.6 (Change of Variable). Assume that:

(a) g : [a, b] → [c, d] is differentiable a.e. on [a, b],

(b) f ∈ L1[c, d], and

(c) F ◦ g ∈ AC[a, b], where F (x) =
∫ x

c
f for x ∈ [c, d].

Then (f ◦ g) g′ ∈ L1[a, b], and

∫ g(v)

g(u)

f(x) dx =

∫ v

u

f(g(t)) g′(t) dt, for all a ≤ u ≤ v ≤ b. (6.17)

Proof. The function F is absolutely continuous and F ′ = f a.e., so Theorem
6.5.2 implies that (F ◦g)′ = (f ◦g) g′ a.e. Since F and F ◦g are both absolutely
continuous, it follows that

∫ g(v)

g(u)

f(x) dx =

∫ g(v)

g(u)

F ′(x) dx = F (g(v)) − F (g(u))

=

∫ v

u

(F ◦ g)′(t) dt

=

∫ v

u

f(g(t)) g′(t) dt. ⊓⊔

The next example shows that it is possible for the hypotheses of Theorem
6.5.6 to be satisfied even when g is not absolutely continuous.
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Example 6.5.7. Consider the functions f(x) = x and g(t) = t sin 1
t , both

on the domain [−1, 1]. We have F (x) =
∫ x

−1
f = 1

2 (x2 − 1). Although g is

not absolutely continuous, the composition (F ◦ g)(t) = 1
2

(
t2 sin2 1

t − 1
)

is
absolutely continuous (see Problem 6.3.7). Since g is differentiable a.e. and f
is integrable, the hypotheses of Theorem 6.5.6 are satisfied, and the change
of variable formula holds. Consequently, if [u, v] ⊆ [−1, 1], then

1

2

(
v2 sin2 1

v − u2 sin2 1
u

)
=

∫ v sin 1
v

u sin 1
u

x dx =

∫ g(v)

g(u)

f(x) dx

=

∫ v

u

(f ◦ g)(t) g′(t) dt

=

∫ v

u

t sin 1
t

(
sin 1

t − 1
t cos 1

t

)
dt.

=

∫ v

u

(
t sin2 1

t − sin 1
t cos 1

t

)
dt. ♦

Unfortunately, in order to invoke Theorem 6.5.6 we must know that F ◦ g is
absolutely continuous. The following corollary gives some sufficient conditions
which ensure that the hypotheses of Theorem 6.5.6 are satisfied.

Corollary 6.5.8. Let g : [a, b] → [c, d] and f : [c, d] → C be given. If either:

(a) f is integrable and g ∈ AC[a, b] is monotone increasing, or

(b) f ∈ L∞[c, d] and g ∈ AC[a, b],

then (f ◦ g) g′ ∈ L1[a, b] and equation (6.17) holds.

Proof. Let F (x) =
∫ x

c
f for x ∈ [c, d].

(a) If f is integrable, then F is absolutely continuous. Since g is absolutely
continuous and monotone increasing, Problem 6.3.6 implies that F ◦ g is ab-
solutely continuous. The hypotheses of Theorem 6.5.6 are therefore satisfied,
and the result follows.

(b) If f is essentially bounded, then F is Lipschitz (see Problem 6.4.10).
Since g is absolutely continuous, Problem 6.3.6 implies that F ◦g is absolutely
continuous. The hypotheses of Theorem 6.5.6 are therefore satisfied, and
again the result follows. ⊓⊔

Problems

6.5.9. Suppose that f is a strictly increasing map of [a, b] onto [c, d], and let
g : [c, d] → [a, b] be its inverse function. Prove the following statements.

(a) f and g are continuous, and g is strictly increasing.
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(b) If f ∈ AC[a, b], then f ′(g(t)) g′(t) = 1 for a.e. t ∈ [c, d], and

∫ d

c

g(t) dt =

∫ b

a

xf ′(x) dx.

(c) If g = f−1 ∈ AC[a, b], then g′(f(x)) f ′(x) = 1 for a.e. x ∈ [a, b], and

∫ b

a

f(x) dx =

∫ d

c

tg′(t) dt.

6.5.10. Prove that if f ∈ L1[1,∞) satisfies
∫ ∞

1
f(x)x−2k dx = 0 for all k ∈ N,

then f = 0 a.e.

6.5.11. Exhibit a continuous function g : [a, b] → [c, d] and measurable func-
tions fn, f : [c, d] → R such that fn → f pointwise a.e., but fn ◦ g does not
converge to f ◦ g pointwise a.e.

6.5.12. Assume that g : [a, b] → [c, d] is absolutely continuous, f ∈ L1[c, d],
and (f ◦ g) g′ ∈ L1[a, b]. Prove that the change of variable formula given in
equation (6.17) holds.

6.5.13. This problem will sketch an alternative direct proof of part (a) of
Corollary 6.5.8. Assume that g : [a, b] → [c, d] is absolutely continuous and
monotone increasing, and let F be the set of all functions f ∈ L1[c, d] such
that f(g(t)) g′(t) is measurable and

∫ g(b)

g(a)

f(x) dx =

∫ b

a

f(g(t)) g′(t) dt. (6.18)

Prove the following statements.

(a) If [u, v] ⊆ [c, d], then χ
[u,v] ∈ F .

(b) If f = 0 a.e. on [c, d], then f ∈ F .

(c) If E ⊆ [c, d] is measurable, then χE ∈ F .

(d) F = L1[c, d].

6.6 Convex Functions and Jensen’s Inequality

In this section we will derive an important inequality for convex functions
known as Jensen’s Inequality. Although Jensen’s Inequality can be quite use-
ful, the material of this section will only rarely be referred to in the remainder
of this volume.

The following definition introduces convex functions. The reason for the
terminology “convex” is best understood by considering the graph of a convex
function, one of which is shown in Figure 6.1.
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Definition 6.6.1 (Convex Function). Let −∞ ≤ a < b ≤ ∞ be given. We
say that a function φ : (a, b) → R is convex on the open interval (a, b) if for
all x, y ∈ (a, b) and all 0 < t < 1 we have

φ
(
tx + (1 − t)y

)
≤ t φ(x) + (1 − t)φ(y).

In other words, on any subinterval [x, y] of (a, b), the graph of φ lies on
or below the line segment that joins the points (x, φ(x)) and (y, φ(y)). An
analogous definition is made for concave functions. ♦

Φ

a x tx+H1-tLy y b

ΦHxL

tΦHxL+H1-tLΦHyL

ΦHtx+H1-tLyL

ΦHyL

Fig. 6.1 Graph of a convex function.

We allow (a, b) to be an infinite open interval in Definition 6.6.1. Through-
out this section we will implicitly assume that −∞ ≤ a < b ≤ ∞.

By repeatedly applying the definition of convexity, we obtain the discrete
version of Jensen’s Inequality.

Exercise 6.6.2 (Discrete Jensen Inequality). Assume that φ : (a, b) → R

is a convex function. If N ≥ 2, then for any points x1, . . . , xN ∈ (a, b) and
positive weights t1, . . . , tN that satisfy t1 + · · · + tN = 1, we have

φ

( N∑

j=1

tjxj

)
≤

N∑

j=1

tjφ(xj). ♦ (6.19)

We can also write the Discrete Jensen Inequality in an “unnormalized”
form. Suppose φ is convex, x1, . . . , xN are points in (a, b), and t1, . . . , tN > 0.
Set t = t1 + · · · + tN . Then equation (6.19) implies that

φ

(∑
tjxj∑
tj

)
= φ

(∑
t−1tjxj

)
≤

∑
t−1tjφ(xj) =

∑
tjφ(xj)

∑
tj

.
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We will derive several properties of convex functions below. The following
lemma will play an important role.

Lemma 6.6.3. If φ is convex on (a, b) and x ∈ (a, b) is fixed, then

β(y) =
φ(y) − φ(x)

y − x
, y ∈ (a, b), y 6= x, (6.20)

is monotone increasing on (a, x) ∪ (x, b).

Proof. Suppose that x < y < z < b, and write y = tx + (1 − t)z where
0 < t < 1. Let g be the linear function whose graph passes through the
points (x, φ(x)) and (z, φ(z)). This function satisfies f(x) = φ(x) and

g(u) − g(x)

u − x
=

φ(z) − φ(x)

z − x
for all u 6= x.

Since φ(x) = g(x), by taking u = y we see that

g(y) = (y − x)
φ(z) − φ(x)

z − x
+ φ(x).

Also, φ(y) ≤ g(y) by the definition of convexity, so

(y−x)
φ(y) − φ(x)

y − x
+ φ(x) = φ(y) ≤ g(y) = (y−x)

φ(z) − φ(x)

z − x
+ φ(x).

Since y − x > 0, it follows that

β(y) =
φ(y) − φ(x)

y − x
≤ φ(z) − φ(x)

z − x
= β(z).

Thus β is increasing on (x, b). A similar argument applies on the interval
(a, x), and another similar argument establishes that β(z) ≤ β(y) when
z < x < y. Hence β is monotone increasing on (a, x) ∪ (x, b). ⊓⊔

Next we derive an equivalent characterization of convexity.

Lemma 6.6.4. A function φ : (a, b) → R is convex if and only if for all
a < x < y < z < b we have

φ(y) − φ(x)

y − x
≤ φ(z) − φ(x)

z − x
. (6.21)

Proof. ⇒. Assume that φ is convex, fix x ∈ (a, b), and let β(x) be defined by
equation (6.20). Then equation (6.21) follows immediately from the fact that
β is monotone increasing to the right of x.

⇐. Assume that equation (6.21) holds whenever a < x < y < z < b.
Suppose that a < x < z < b and 0 < t < 1. Then y = tx + (1 − t)z satisfies
x < y < z. Since
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y − x = (t − 1)x + (1 − t)z = (1 − t) (z − x),

equation (6.21) therefore implies that

φ(tx + (1 − t)z) = φ(y) ≤ (y − x)
φ(z) − φ(x)

z − x
+ φ(x)

= (1 − t)
(
φ(z) − φ(x)

)
+ φ(x)

= (1 − t)φ(z) + t φ(x). ⊓⊔

This provides us with a convenient sufficient condition for convexity.

Theorem 6.6.5. If φ : (a, b) → R is differentiable at every point of (a, b) and
φ′ is monotone increasing on (a, b), then φ is convex.

Proof. The reader should check that if b1, b2 > 0 and a1, a2 ∈ R, then

min
{a1

b1
,

a2

b2

}
≤ a1 + a2

b1 + b2
≤ max

{a1

b1
,

a2

b2

}
. (6.22)

Fix a < x < y < z < b. Then φ is continuous on [x, y] and differentiable on
(x, y), so the Mean Value Theorem implies that there exists a point ξ1 ∈ (x, y)
such that

φ(y) − φ(x)

y − x
= φ′(ξ1).

Similarly, there exists a point ξ2 ∈ (y, z) such that

φ(z) − φ(y)

z − y
= φ′(ξ2).

Since φ′ is increasing, by applying equation (6.22) we see that

φ(y) − φ(x)

y − x
= φ′(ξ1) = min

{
φ′(ξ1), φ

′(ξ2)
}

= min

{
φ(y) − φ(x)

y − x
,

φ(z) − φ(y)

z − y

}

≤
(
φ(y) − φ(x)

)
+

(
φ(z) − φ(y)

)

(y − x) + (z − y)

=
φ(z) − φ(x)

z − x
.

Lemma 6.6.4 therefore implies that φ is convex. ⊓⊔
Corollary 6.6.6. (a) If 1 ≤ p < ∞, then xp is convex on (0,∞).

(b) If a ∈ R, then eax is convex on (−∞,∞).

(c) − lnx is convex on (0,∞). ♦
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A convex function need not be differentiable at every point of (a, b), but
we prove next that it will be differentiable at all but countably many points,
right-differentiable at every point, and left-differentiable at every point. Here
the right and left derivatives are defined, respectively, by

φ′
+(x) = lim

y→x+

φ(y) − φ(x)

y − x
and φ′

−(x) = lim
y→x−

φ(y) − φ(x)

y − x
.

Theorem 6.6.7. If φ is a convex function on (a, b), then the following state-
ments hold.

(a) φ′
+(x) and φ′

−(x) both exist (and are finite) at each point x ∈ (a, b).

(b) φ is continuous on (a, b).

(c) If a < x < y < b, then

φ′
+(x) ≤ φ(y) − φ(x)

y − x
≤ φ′

−(y). (6.23)

(d) If a < x < b, then φ′
−(x) ≤ φ′

+(x).

(e) φ′
+ and φ′

− are monotone increasing on (a, b).

(f) φ is differentiable at all but at most countably many points in (a, b).

Proof. (a) Fix x ∈ (a, b). By Lemma 6.6.3, the function β defined by equation
(6.20) is increasing on (a, x) ∪ (x, b). Consequently β is bounded above on
(a, x), since if we fix any z ∈ (x, b) then β(y) ≤ β(z) for y ∈ (a, x). Since β
is monotone increasing and bounded on (a, x), it therefore has a finite limit
as y approaches x from the left. That is,

φ′
−(x) = lim

y→x−

φ(y) − φ(x)

y − x
= lim

y→x−

β(y)

exists. A similar argument shows that φ′
+(x) exists.

(b) Since φ is both left and right differentiable at each point, it is both
left and right continuous at each point.

(c) Since β is increasing on (x, b), if we fix x < y < b then

φ′
+(x) = lim

t→x+
β(t) ≤ β(y) =

φ(y) − φ(x)

y − x
.

A symmetric argument yields the other inequality.

(d) Since β is increasing on (a, x) ∪ (x, b), the values β takes to the left of
x are less than or equal to the values that β takes to the right of x. Therefore

φ′
−(x) = lim

t→x−

β(t) ≤ lim
t→x+

β(t) = φ′
+(x).
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(e) Combining parts (c) and (d), if x < y < b then φ′
+(x) ≤ φ′

−(y) ≤ φ′
+(y).

Therefore φ′
+ is monotone increasing, and a similar argument applies to φ′

−.

(f) Since φ′
+ is monotone increasing on (a, b), it can have at most countably

many discontinuities. If y is not one of those points, then y is a point of
continuity for φ′

+ and therefore, by part (c),

φ′
+(y) ≥ φ′

−(y) = lim
x→y−

φ(y) − φ(x)

y − x
≥ lim

x→y−

φ′
+(x) = φ′

+(y).

Hence φ′
+(y) = φ′

−(y), so φ is differentiable at y. ⊓⊔

In order to prove Jensen’s Inequality, we will need the following notion.

Definition 6.6.8 (Supporting Line). Let φ be a convex function on (a, b).
A supporting line for φ at x ∈ (a, b) is any line that passes through the point
(x, φ(x)) and lies on or below the graph of φ. ♦

Here is a way to recognize supporting lines.

Lemma 6.6.9. Suppose that φ is convex on (a, b). Then any line that passes
through (x, φ(x)) and has a slope m that lies in the range φ′

−(x) ≤ m ≤ φ′
+(x)

is a supporting line for φ at x.

Proof. Assume that L is such a line. If x < y < b, then

L(y) = (y − x)m + φ(x)

≤ (y − x)φ′
+(x) + φ(x)

≤ (y − x)
φ(y) − φ(x)

y − x
+ φ(x) (by equation (6.23))

= φ(y).

Combining this with a similar argument for points y that lie to the left of x,
we conclude that the graph of L lies on or below the graph of φ. ⊓⊔

Finally, we prove Jensen’s Inequality.

Theorem 6.6.10 (Jensen’s Inequality). Let E be a measurable subset of
Rd such that 0 < |E| < ∞. If g : E → (a, b) is integrable and φ is convex on
(a, b), then

φ

(
1

|E|

∫

E

g

)
≤ 1

|E|

∫

E

φ ◦ g. (6.24)

Proof. Since g is integrable, t = 1
|E|

∫
E

g is a finite real number. Also, since

g(x) < b for every x,

t =
1

|E|

∫

E

g ≤ 1

|E|

∫

E

b = b. (6.25)
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Suppose for the moment that b is finite. If t = b, then equation (6.25) implies
that

∫
E

(b − g) = 0. But b − g ≥ 0, so this implies that g = b a.e. This
contradicts our assumption that g(x) < b for every x. Consequently we must
have t < b if b is finite. On the other hand, if b = ∞ then we certainly
have t < b in that case as well. A similar argument shows that a < t, so we
conclude that the number t belongs to the open interval (a, b).

Let L be any supporting line for φ at the point t, and let m be its slope.
By definition L(t) = φ(t), so the equation for L is

L(y) = m(y − t) + φ(t), for y ∈ R.

Since L lies on or below the graph of φ,

L(y) = m(y − t) + φ(t) ≤ φ(y), for y ∈ (a, b).

Choose any point x ∈ E. Then g(x) ∈ (a, b), so by applying the preceding
inequality to the point y = g(x) we see that

L(g(x)) = m
(
g(x) − t

)
+ φ(t) ≤ φ(g(x)). (6.26)

If we are allowed to integrate this equation over x then we obtain

∫

E

φ(g(x)) dx ≥
∫

E

m
(
g(x) − t

)
dx +

∫

E

φ(t) dx

= m

∫

E

g − mt |E| + φ(t) |E|

= mt |E| − mt |E| + φ(t) |E|

= φ

(
1

|E|

∫

E

g

)
|E|, (6.27)

and by rearranging this we arrive at equation (6.24).
However, there is a technical issue. Although φ ◦ g is measurable, we do

not know that φ ◦ g is nonnegative or that it is integrable. Therefore, it is
possible that

∫
E

(φ ◦ g) might not exist, in which case the calculations above
do not make sense. To see that this integral does exist, we use the inequality
in equation (6.26) and the integrability of g to compute that

∫

E

(φ ◦ g)− ≤
∫

E

|m
(
g(x) − t

)
+ φ(t)| dx

≤ |m|
(∫

E

|g|
)

+ |mt| |E| + |φ(t)| |E| < ∞.

Hence
∫

E
(φ ◦ g)− and

∫
E

(φ ◦ g)+ cannot both be infinite, so
∫

E
(φ ◦ g) exists

in the extended real sense. Our calculations in equation (6.27) are therefore
valid even if it should be the case that

∫
E

(φ ◦ g) = ∞. ⊓⊔
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Problems

6.6.11. Prove the following statements.

(a) If φ and ψ are convex on (a, b), then φ + ψ is convex on (a, b).

(b) If φ is convex on (a, b) and c > 0, then cφ is convex on (a, b).

(c) If {φn}n∈N is a sequence of convex functions on (a, b) and φn → φ
pointwise, then φ is convex on (a, b).

6.6.12. Let a, b ≥ 0 and 1 < p < ∞ be given, and let p′ be the dual index
to p, i.e., p′ is the unique real number that satisfies 1

p + 1
p′ = 1. Write a = ex/p

and b = ey/p′

, and use the Discrete Jensen Inequality and the fact that ex is
convex to prove that

ab ≤ ap

p
+

bp′

p′
.

6.6.13. Given numbers 0 < an ≤ 1, prove that
∞∑

n=1

ln an

2n
≤ ln

(
∞∑

n=1

an

2n

)
.

6.6.14. Let E be a measurable subset of Rd such that 0 < |E| < ∞, and
suppose that f : E → R is measurable. Prove that

exp

(
1

|E|

∫

E

f

)
≤ 1

|E|

∫

E

ef(x) dx, where exp(t) = et,

and
1

|E|

∫

E

ln |f | ≤ ln

(
1

|E|

∫

E

|f |
)

.

6.6.15. Prove that a function φ : (a, b) → R is convex if and only if φ is
continuous and

φ

(
x + y

2

)
≤ φ(x) + φ(y)

2
, for all x, y ∈ (a, b).

6.6.16. Assume that f is monotone increasing and integrable on (a, b). Prove
that the indefinite integral φ(x) =

∫ x

a
f(t) dt is convex on (a, b).

6.6.17. Suppose that φ is convex on (a, b). Prove that φ is Lipschitz on each
closed interval [c, d] ⊆ (a, b).



Chapter 7

The Lp Spaces

The Lebesgue spaces provide us with a way to quantify integrability proper-
ties of functions. We have already seen two particular examples. The space
L∞(E), which consists of all essentially bounded functions on the domain E,
was introduced in Section 3.3, and L1(E), which consists of the Lebesgue
integrable functions on E, was defined in Section 4.4. Now we will consider
an entire family of spaces Lp(E) with 0 < p ≤ ∞.

To illustrate the properties of Lp(E), we first introduce a discrete version,
the ℓp-spaces, in Section 7.1. We derive two fundamental results, Hölder’s
Inequality and Minkowski’s Inequality, which establish that ℓp is a normed
space when p ≥ 1, and we prove that ℓp is complete with respect to that
norm and therefore is a Banach space (at least for p ≥ 1; for p < 1 it turns
out that ℓp is a complete metric space, but is not a normed space).

We introduce the Lebesgue spaces Lp(E) in Section 7.2. Some properties
of the Lebesgue spaces parallel those of the ℓp spaces, but we find a technical
difficulty in that a function that has zero Lp-norm need only be zero at
almost every point. However, once we identify functions that are equal almost
everywhere, we can prove that Lp(E) is a Banach space for each index p in
the range 1 ≤ p ≤ ∞. We study convergence in Lp-norm in Section 7.3, and
show in Section 7.4 that Lp(E) is separable when p is finite, but not when
p = ∞.

Norms and seminorms have appeared at various times in earlier chapters.
In particular, we saw in Section 3.3 that

‖f‖∞ = esssup
x∈E

|f(x)|

is a seminorm on L∞(E), and we similarly observed in Section 4.4 that

‖f‖1 =

∫

E

|f(x)| dx

253
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is a seminorm on L1(E). We will make frequent use of norms and seminorms
(and, to a lesser extent, metrics) in this chapter. Many of the important
notions will be discussed as they are presented here, but the reader may wish
to review Chapter 1 before proceeding further.

7.1 The ℓp Spaces

The ℓp spaces are vector spaces whose elements are infinite sequences of
scalars that are either p-summable or bounded in the sense that we will
make precise in the next definition. For simplicity of presentation, we will
take the complex plane C to be our field of scalars throughout this section,
but the reader can check that entirely analogous results hold if we restrict to
just real scalars.

Definition 7.1.1 (p-Summable and Bounded Sequences).

(a) Let 0 < p < ∞ be a finite real number. A sequence of scalars x = (xk)k∈N

is p-summable if
∑∞

k=1 |xk|p < ∞. In this case we set

‖x‖p = ‖(xk)k∈N‖p =

( ∞∑

k=1

|xk|p
)1/p

.

If the sequence x is not p-summable, then we take ‖x‖p = ∞.

(b) A sequence of scalars x = (xk)k∈N is bounded if supk∈N |xk| < ∞. In this
case we set

‖x‖∞ = sup
k∈N

|xk|.

If the sequence x is not bounded, then ‖x‖∞ = ∞. ♦

If p = 1 then we usually just write summable (or sometimes absolutely
summable) instead of 1-summable, and for p = 2 we write square summable
instead of 2-summable. Problem 7.1.22 shows that ‖ · ‖∞ is the limit of ‖ · ‖p

in the sense that if x is p-summable for some finite p, then ‖x‖p → ‖x‖∞ as
p → ∞.

We collect the p-summable or bounded sequences to form the ℓp spaces,
as follows.

Definition 7.1.2 (The ℓp Spaces).

(a) If 0 < p < ∞, then the space ℓp consists of all p-summable sequences of
scalars. That is, a sequence x = (xk)k∈N belongs to ℓp if and only if

‖x‖p = ‖(xk)k∈N‖p =

( ∞∑

k=1

|xk|p
)1/p

< ∞.
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(b) For p = ∞, the space ℓ∞ consists of all bounded sequences of scalars.
That is, a sequence x = (xk)k∈N belongs to ℓ∞ if and only if

‖x‖∞ = ‖(xk)k∈N‖∞ = sup
k∈N

|xk| < ∞. ♦

For example, the sequence

x =
(

1
k

)
k∈N

=
(
1, 1

2 , 1
3 , . . .

)

belongs to ℓp for each index 1 < p ≤ ∞, but x does not belong to ℓp for any
0 < p ≤ 1. On the other hand, the constant sequence

y = (1)k∈N =
(
1, 1, 1, . . .

)

belongs to ℓ∞, but does not belong to ℓp for any finite p. Problem 7.1.21 asks
for a proof that the ℓp spaces are nested and distinct in the following sense:

0 < p < q ≤ ∞ =⇒ ℓp ( ℓq. (7.1)

Remark 7.1.3. By making appropriate changes in the preceding definitions,
we can consider spaces of sequences that are indexed by sets other than the
natural numbers N. For example, if I is a countable index set, then we say
that a sequence x = (xk)k∈I is p-summable if and only if

∑
k∈I |xk|p < ∞.

For finite p, we let ℓp(I) be the space of all p-summable sequences indexed
by I, and we define ℓ∞(I) to be the space of all bounded sequences indexed
by I. If I = N, then this reduces to the definition of ℓp that we gave before,
i.e., ℓp = ℓp(N).

A common choice of index set is I = Z. A sequence indexed by Z is a
bi-infinite sequence of the form

x = (xk)k∈Z = (. . . , x−2, x−1, x0, x1, x2, . . . ).

The space ℓp(Z) is the set of all bi-infinite sequences that are p-summable (if
p is finite) or bounded (if p = ∞). For example, x =

(
2−|k|

)
k∈Z

belongs to

ℓp(Z) for every index 0 < p ≤ ∞. Problem 7.1.27 shows how to define ℓp(I)
when I is uncountable.

We can also let the index set be finite. If I = {1, . . . , d} then a sequence
indexed by I is simply a vector x = (x1, . . . , xd) ∈ Cd. Every such sequence
is p-summable and bounded, so for I = {1, . . . , d} we have ℓp(I) = Cd for
every index 0 < p ≤ ∞. ♦

We will prove in Theorem 7.1.15 that ‖ · ‖p is an norm on ℓp for all indices
1 ≤ p ≤ ∞. Therefore we refer to ‖ · ‖p as the ℓp-norm when p ≥ 1. For p = 2

we usually call ‖ · ‖2 the Euclidean norm, and for p = ∞ we often refer to
‖ · ‖∞ as the sup-norm.
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For 0 < p < 1 we will see in Section 7.1.5 that ‖ · ‖p is not a norm. On
the other hand, Theorem 7.1.18 will provide a substitute result, namely that
d(x, y) = ‖x − y‖p

p defines a metric on ℓp when 0 < p < 1.
Addition of sequences is performed componentwise, i.e., if x = (xk)k∈N and

y = (yk)k∈N, then x + y = (xk + yk)k∈N. The sum of two bounded sequences
is bounded, so ℓ∞ is closed under addition. The next lemma shows that ℓp is
closed under addition when p is finite.

Lemma 7.1.4. Let 0 < p < ∞ be given.

(a) If a, b ≥ 0, then (a + b)p ≤ 2p (ap + bp).

(b) If x = (xk)k∈N and y = (yk)k∈N are any two sequences of scalars, then

‖x + y‖p
p ≤ 2p

(
‖x‖p

p + ‖y‖p
p

)
.

(c) If x, y ∈ ℓp, then x + y ∈ ℓp.

Proof. If a, b ≥ 0, then

(a + b)p ≤
(
max{a, b} + max{a, b}

)p

= 2p max{ap, bp} ≤ 2p
(
ap + bp

)
.

Parts (b) and (c) follow immediately from this. ⊓⊔

Combining Lemma 7.1.4 with the fact that ℓp is closed under multiplication
by scalars, we see that ℓp is a vector space. For this reason, we often refer to
an element x of ℓp as a vector in ℓp. The zero vector in ℓp is the zero sequence
0 = (0, 0, 0, . . . ). We use the same symbol 0 to denote both the zero sequence
and the number zero, but the meaning should always be clear from context.

7.1.1 Hölder’s Inequality

It is clear that ‖ · ‖p satisfies the nonnegativity, homogeneity, and uniqueness
properties of a norm, but it is not obvious whether the Triangle Inequality
is satisfied. We will prove that ‖ · ‖p is a norm on ℓp when p ≥ 1, but first
we need to establish a fundamental result known as Hölder’s Inequality. This
gives us a relationship between ℓp and ℓp′

, where p′ is the dual index to p,
the unique extended real number that satisfies

1

p
+

1

p′
= 1. (7.2)

In equation (7.2), we follow the standard real analysis convention that

1

∞ = 0.
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Some examples of dual indices are

1′ = ∞,

(
4

3

)′

= 4,

(
3

2

)′

= 3, 2′ = 2, 3′ =
3

2
, 4′ =

4

3
, ∞′ = 1.

The dual of p′ is p, i.e., (p′)′ = p for 1 ≤ p ≤ ∞. For 1 < p < ∞ we can write
p′ explicitly as

p′ =
p

p − 1
, 1 < p < ∞.

The key to Hölder’s Inequality is the inequality for scalars established in
the following exercise.

Exercise 7.1.5. (a) Show that if 0 < θ < 1, then tθ ≤ θt + (1 − θ) for all
t ≥ 0, and equality holds if and only if t = 1.

(b) Suppose that 1 < p < ∞ and a, b ≥ 0. Apply part (a) with t = apb−p′

and θ = 1/p to show that

ab ≤ ap

p
+

bp′

p′
, (7.3)

and prove that equality holds if and only if b = ap−1. ♦

Remark 7.1.6. For p = 2, equation (7.3) reduces to ab ≤ a2

2 + b2

2 . Replacing

a by
√

a and b by
√

b we obtain

√
ab ≤ a + b

2
, for a, b ≥ 0,

which is the inequality that relates the arithmetic and geometric means of
a and b. Hence equation (7.3) is a generalization of the arithmetic-geometric
mean inequality to other values of p. ♦

Exercise 7.1.5 gives one proof of equation (7.3), but there are other ap-
proaches. For example, a proof based on Jensen’s inequality appeared earlier
in Problem 6.6.12. Alternatively, observe that xp−1 is continuous and strictly

increasing on the interval [0, a], and its inverse function is y
1

p−1 . Figure 7.1
gives a “proof by picture” that

ab ≤
∫ a

0

xp−1 dx +

∫ b

0

y
1

p−1 dy. (7.4)

Evaluating the right-hand side of equation (7.4), we obtain another proof of
equation (7.3).

Now we prove Hölder’s Inequality, which bounds the ℓ1-norm of a “com-
ponentwise product sequence” xy = (xkyk)k∈N in terms of the ℓp-norm of x
and the ℓp′

-norm of y.
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a

b

Fig. 7.1 The curved line is the graph of y = xp−1. The area of the vertically hatched

region is
R a
0 xp−1 dx, the area of the horizontally hatched region is

R b
0 y

1
p−1 dy, and the

area of the rectangle [0, a] × [0, b] is ab.

Theorem 7.1.7 (Hölder’s Inequality). Fix 1 ≤ p ≤ ∞ and let p′ be the

dual index to p. If x = (xk)k∈N ∈ ℓp and y = (yk)k∈N ∈ ℓp′

, then the sequence
xy = (xkyk)k∈N belongs to ℓ1, and

‖xy‖1 ≤ ‖x‖p ‖y‖p′ . (7.5)

If 1 < p < ∞, then equation (7.5) is

∞∑

k=1

|xkyk| ≤
( ∞∑

k=1

|xk|p
)1/p ( ∞∑

k=1

|yk|p
′

)1/p′

. (7.6)

If p = 1, then equation (7.5) is

∞∑

k=1

|xkyk| ≤
( ∞∑

k=1

|xk|
) (

sup
k∈N

|yk|
)

. (7.7)

If p = ∞, then equation (7.5) is

∞∑

k=1

|xkyk| ≤
(

sup
k∈N

|xk|
) ( ∞∑

k=1

|yk|
)

. (7.8)

Proof. Case p = 1. In this case p′ = ∞, so y is bounded. Since |yk| ≤ ‖y‖∞
for every k, we see that

∞∑

k=1

|xkyk| ≤
∞∑

k=1

|xk| ‖y‖∞ = ‖y‖∞
∞∑

k=1

|xk|,

which is equation (7.7). The case p = ∞ is symmetrical, because p′ = 1 when
p = ∞.
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Case 1 < p < ∞. If either x or y is the zero sequence, then equation (7.6)
holds trivially, so we may assume that x 6= 0 and y 6= 0.

Suppose first that x ∈ ℓp and y ∈ ℓp′

are unit vectors in their respective
spaces, i.e., ‖x‖p = 1 and ‖y‖p′ = 1. Then by applying equation (7.3), we see
that

‖xy‖1 =

∞∑

k=1

|xkyk| ≤
∞∑

k=1

( |xk|p
p

+
|yk|p

′

p′

)

=
‖x‖p

p

p
+

‖y‖p′

p′

p′
=

1

p
+

1

p′
= 1. (7.9)

Now let x be any nonzero sequence in ℓp, and let y be any nonzero sequence
in ℓp′

. Define
u =

x

‖x‖p
and v =

y

‖y‖p′

.

Then u is a unit vector in ℓp, and v is a unit vector in ℓp′

, so equation (7.9)
implies that ‖uv‖1 ≤ 1. However,

uv =
xy

‖x‖p ‖y‖p′

,

so by homogeneity we obtain

‖xy‖1

‖x‖p ‖y‖p′

= ‖uv‖1 ≤ 1.

Rearranging yields ‖xy‖1 ≤ ‖x‖p ‖y‖p′ . ⊓⊔

7.1.2 Minkowski’s Inequality

Our next goal is to show that ‖ · ‖p is a norm on ℓp when 1 ≤ p ≤ ∞. The
only difficulty is showing that the Triangle Inequality on ℓp (which is often
called Minkowski’s Inequality) is satisfied. For p = 1 and p = ∞ this is not
difficult, so we assign those cases as an exercise.

Exercise 7.1.8 (Minkowski’s Inequality). Prove that the following state-
ments hold.

(a) If x, y ∈ ℓ1, then ‖x + y‖1 ≤ ‖x‖1 + ‖y‖1.

(b) If x, y ∈ ℓ∞, then ‖x + y‖∞ ≤ ‖x‖∞ + ‖y‖∞. ♦

The Triangle Inequality is more challenging to prove when 1 < p < ∞. We
will use Hölder’s Inequality to derive Minkowski’s Inequality for these cases.



260 7 The Lp Spaces

Theorem 7.1.9 (Minkowski’s Inequality). Fix 1 < p < ∞. If x, y ∈ ℓp,
then

‖x + y‖p ≤ ‖x‖p + ‖y‖p. (7.10)

If x = (xk)k∈N and y = (yk)k∈N, then equation (7.10) is

( ∞∑

k=1

|xk + yk|p
)1/p

≤
( ∞∑

k=1

|xk|p
)1/p

+

( ∞∑

k=1

|yk|p
)1/p

.

Proof. Since p > 1, we can write

‖x + y‖p
p =

∞∑

k=1

|xk + yk|p

=
∞∑

k=1

|xk + yk| |xk + yk|p−1

≤
∞∑

k=1

|xk| |xk + yk|p−1 +
∞∑

k=1

|yk| |xk + yk|p−1

= S1 + S2.

To simplify the series S1, set zk = |xk + yk|p−1, so

S1 =

∞∑

k=1

|xk| |zk|.

We apply Hölder’s Inequality, and then substitute p′ = p/(p−1), to compute
as follows:

S1 =

∞∑

k=1

|xk| |zk| ≤
( ∞∑

k=1

|xk|p
)1/p ( ∞∑

k=1

|zk|p
′

)1/p′

=

( ∞∑

k=1

|xk|p
)1/p ( ∞∑

k=1

|xk + yk|p
)(p−1)/p

= ‖x‖p ‖x + y‖p−1
p .

A similar calculation shows that

S2 ≤ ‖y‖p ‖x + y‖p−1
p .

Combining these inequalities,

‖x + y‖p
p ≤ S1 + S2 ≤ ‖x + y‖p−1

p

(
‖x‖p + ‖y‖p

)
.

Dividing both sides by ‖x + y‖p−1
p yields ‖x + y‖p ≤ ‖x‖p + ‖y‖p. ⊓⊔
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Now that we have established Minkowski’s Inequality, we can show that
‖ · ‖p is a norm on ℓp.

Theorem 7.1.10. If 1 ≤ p ≤ ∞, then ‖ · ‖p is a norm on ℓp. That is, the
following four statements are satisfied for all x, y ∈ ℓp and all scalars c ∈ C.

(a) Nonnegativity: 0 ≤ ‖x‖p < ∞.

(b) Homogeneity: ‖cx‖p = |c| ‖x‖p.

(c) The Triangle Inequality: ‖x + y‖p ≤ ‖x‖p + ‖y‖p.

(d) Uniqueness: ‖x‖p = 0 if and only if x = 0. ♦

Proof. The nonnegativity requirement is satisfied by definition, and the ho-
mogeneity and uniqueness requirements follow easily. For p = 1 or p = ∞,
the Triangle Inequality is established in Exercise 7.1.8, and for 1 < p < ∞ it
is proved in Theorem 7.1.9. ⊓⊔

Our proofs of Hölder’s and Minkowski’s Inequalities can be easily adapted
to sequences indexed by any other countable index set I. For example, if
I = Z then

‖x‖p =

( ∞∑

k=−∞

|xk|p
)1/p

, x = (xk)k∈Z ∈ ℓp(Z),

defines a norm on ℓp(Z) for 1 ≤ p < ∞, and ‖x‖∞ = supk∈Z |xk| is a norm on
ℓ∞(Z). On the other hand, if we let I = {1, . . . , d} then ℓp(I) is d-dimensional
Euclidean space Cd. This gives us the following collection of norms on Cd.
By restricting to real scalars, an entirely analogous result holds for Rd.

Corollary 7.1.11. For each x = (x1, . . . , xd) ∈ Cd, define

‖x‖p =





(
|x1|p + · · · + |xd|p

)1/p
, if 1 ≤ p < ∞,

max
{
|x1|, . . . , |xd|

}
, if p = ∞.

Then ‖ · ‖p is a norm on Cd for each index 1 ≤ p ≤ ∞. ♦

Open balls play an important role in any normed space. In ℓp, the open
ball centered at x ∈ ℓp with radius r is

Br(x) =
{
y ∈ ℓp : ‖x − y‖p < r

}
.

Since ℓp is a normed space when p ≥ 1, it shares all of the properties that
any normed space enjoys. In particular, it follows from the Triangle Inequality
that open balls in a normed space are convex (see Problem 1.2.11). The unit
open balls in R2 corresponding to several choices of p ≥ 1 are shown in Figure
7.2. All of these are indeed convex, although only the ball corresponding to
p = 2 is “spherical” in the colloquial sense.



262 7 The Lp Spaces

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Fig. 7.2 Unit open balls B1(0) with respect to four norms ‖ · ‖p on R2. Top left: p = 1.
Top right: p = 3/2. Bottom left: p = 2. Bottom right: p = ∞.

7.1.3 Convergence in the ℓp Spaces

When we speak of convergence in a normed space, unless we explicitly state
otherwise we mean convergence with respect to the norm of that space. We
spell this out precisely for ℓp in the following definition.

Definition 7.1.12 (Convergence in ℓp). A sequence of vectors {xn}n∈N

in ℓp converges to a vector x ∈ ℓp if

lim
n→∞

‖x − xn‖p = 0.

In this case we write xn → x in ℓp, and we say that xn converges to x in
ℓp-norm. ♦

Each vector xn in Definition 7.1.12 is itself a sequence of scalars, as is
the vector x. In order to describe the meaning of convergence in ℓp more
explicitly, let us write xn and x as

xn =
(
xn(k)

)
k∈N

=
(
xn(1), xn(2), . . .

)

and
x =

(
x(k)

)
k∈N

=
(
x(1), x(2), . . .

)
.
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x1 = (x1(1), x1(2), x1(3), x1(4), . . . ) components of x1

x2 = (x2(1), x2(2), x2(3), x2(4), . . . ) components of x2

x3 = (x3(1), x3(2), x3(3), x3(4), . . . ) components of x3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

↓ ↓ ↓ ↓ ↓

x = (x(1), x(2), x(3), x(4), . . .) components of x

Fig. 7.3 Illustration of componentwise convergence. For each k, the kth component of xn

converges to the kth component of x.

That is, xn(k) denotes the kth component of xn, and x(k) is the kth com-
ponent of x. Using this notation, if p is finite then xn → x in ℓp if and only
if

lim
n→∞

‖x − xn‖p
p = lim

n→∞

( ∞∑

k=1

|x(k) − xn(k)|p
)

= 0, (7.11)

while if p = ∞ then xn → x in ℓp if and only if

lim
n→∞

‖x − xn‖∞ = lim
n→∞

(
sup
k∈N

|x(k) − xn(k)|
)

= 0. (7.12)

Looking at equations (7.11) or (7.12), we see that if we choose a particular k
and focus our attention on just the kth components of xn and x, then we
have

lim
n→∞

|x(k) − xn(k)| ≤ lim
n→∞

‖x − xn‖p = 0. (7.13)

That is, for each fixed k, the kth component of xn converges to the kth
component of x. As formalized in the next definition (and illustrated in Figure
7.3), this is called componentwise convergence of xn to x.

Definition 7.1.13 (Componentwise Convergence). For each n ∈ N let
xn =

(
xn(k)

)
k∈N

be a sequence of scalars, and let x =
(
x(k)

)
k∈N

be another
sequence of scalars. We say that xn converges componentwise to x if

lim
n→∞

xn(k) = x(k) for every k ∈ N. ♦

Using this terminology, equation (7.13) establishes that convergence in ℓp

implies componentwise convergence. We state this explicitly as follows.

Lemma 7.1.14. Fix 0 < p ≤ ∞. If xn, x ∈ ℓp and xn → x in ℓp, then xn

converges componentwise to x. ♦

However, componentwise convergence need not imply convergence in ℓp-
norm. For example, let

δn = (0, . . . , 0, 1, 0, 0, . . . ) (7.14)
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denote the sequence that has a 1 in the nth component and zeros elsewhere.
We call δn the nth standard basis vector, and refer to E = {δn}n∈N as the
sequence of standard basis vectors, or simply the standard basis. Given k we
have δn(k) = 0 for all n > k, so δn converges componentwise to the zero
sequence as n → ∞. However, δn does not converge to 0 in ℓp-norm because
‖0 − δn‖p = 1 for every n.

7.1.4 Completeness of the ℓp Spaces

The notion of a Cauchy sequence in a generic normed or metric space was
introduced in Definition 1.1.2. Specializing to ℓp, a sequence {xn}n∈N in ℓp

is Cauchy in ℓp-norm, or simply Cauchy for short, if for every ε > 0 there
exists an integer N > 0 such that

m, n ≥ N =⇒ ‖xm − xn‖p < ε.

By applying the Triangle Inequality, we immediately see that every con-
vergent sequence is Cauchy. A metric or normed space in which every Cauchy
sequence converges to an element of the space is said to be complete, and a
complete normed space is also called a Banach space. For example, R and C

are Banach spaces with respect to absolute value.
We will prove that ℓp is complete for each index 1 ≤ p ≤ ∞. The proof is

a typical example of a completeness argument: We assume that {xn}n∈N is a
Cauchy sequence, then construct a “candidate vector” x that the sequence ap-
pears to converge to, and finally show that we do indeed have ‖x − xn‖p → 0
as n → ∞.

Theorem 7.1.15 (Completeness of ℓp). If 1 ≤ p ≤ ∞, then ℓp is a Banach
space with respect to the norm ‖ · ‖p.

Proof. We will present the proof for finite p, as the proof for p = ∞ is similar.
Assume that {xn}n∈N is a Cauchy sequence in ℓp, and write the compo-

nents of xn as

xn =
(
xn(1), xn(2), . . .

)
=

(
xn(k)

)
k∈N

.

If ε > 0, then there is an integer N > 0 such that ‖xm − xn‖p < ε for all
m, n ≥ N. Therefore, if we fix a particular index k ∈ N then for all m, n ≥ N
we have

|xm(k) − xn(k)| ≤ ‖xm − xn‖p < ε.

Thus, for this fixed k, we see that
(
xn(k)

)
n∈N

is a Cauchy sequence of scalars.

It must therefore converge since C is a Banach space. Define

x(k) = lim
n→∞

xn(k), (7.15)
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and set x =
(
x(1), x(2), . . .

)
. Then, by construction, xn converges compo-

nentwise to x. We must prove that x ∈ ℓp, and that xn converges to x in
ℓp-norm.

Given ε > 0, there is an N > 0 such that ‖xm−xn‖p < ε for all m, n ≥ N.
Applying the series version of Fatou’s Lemma (see Problem 4.2.18), it follows
that

‖x − xn‖p
p =

∞∑

k=1

|x(k) − xn(k)|p

=

∞∑

k=1

lim inf
m→∞

|xm(k) − xn(k)|p (since x(k) = lim
m→∞

xm(k))

≤ lim inf
m→∞

∞∑

k=1

|xm(k) − xn(k)|p (Fatou for Series)

= lim inf
m→∞

‖xm − xn‖p
p

≤ εp. (7.16)

Even though we do not know yet that x ∈ ℓp, this tells us that the vector
x−xn has finite ℓp-norm and therefore belongs to ℓp. Since ℓp is closed under
addition, it follows that x = (x−xn)+xn ∈ ℓp. Thus, our candidate sequence
x does belong to ℓp. Further, equation (7.16) establishes that ‖x − xn‖p ≤ ε
for all n ≥ N, so we have shown that ‖x − xn‖p → 0 as n → ∞. Hence
xn → x in ℓp-norm, and therefore ℓp is complete. ⊓⊔

Similarly, if I is any countable index set then ℓp(I) is complete for each
1 ≤ p ≤ ∞. In particular, taking I = {1, . . . , d} gives the following corollary
(and a similar result holds for Rd).

Corollary 7.1.16. If 1 ≤ p ≤ ∞, then Cd is a Banach space with respect to
the norm ‖ · ‖p defined in Corollary 7.1.11. ♦

7.1.5 ℓp for p < 1

The ℓp spaces with indices 0 < p < 1 do play an important role in certain
applications, such as those requiring “sparse representations.” Unfortunately,
‖ · ‖p is not a norm when p < 1. For example, using the first two standard
basis vectors δ1 = (1, 0, 0, 0, . . . ) and δ2 = (0, 1, 0, 0, . . . ) we compute that

‖δ1 + δ2‖p = 21/p > 2 = ‖δ1‖p + ‖δ2‖p.

Hence ‖ · ‖p fails the Triangle Inequality when p < 1. Even so, the following
exercise shows that we can define a metric dp on ℓp (see Definition 1.1.1 for
the definition of a metric).



266 7 The Lp Spaces

Exercise 7.1.17. Given 0 < p < 1, prove the following statements.

(a) (1 + t)p ≤ 1 + tp for all t > 0.

(b) If a, b > 0, then (a + b)p ≤ ap + bp.

(c) ‖x + y‖p
p ≤ ‖x‖p

p + ‖y‖p
p for all x, y ∈ ℓp.

(d) dp(x, y) = ‖x − y‖p
p =

∑∞
k=1 |xk − yk|p defines a metric on ℓp. ♦

When p < 1, convergence and other notions in ℓp are defined with respect
to the metric dp. For example, xn → x in ℓp if dp(x, xn) → 0 as n → ∞. An
argument virtually identical to the proof of Theorem 7.1.15 shows that every
Cauchy sequence in ℓp converges to an element of ℓp. Thus ℓp is a complete
metric space (but we do not call it a Banach space because it is not a normed
space). We summarize this discussion as follows.

Theorem 7.1.18. If 0 < p < 1, then dp is a metric on ℓp, and ℓp is a
complete metric space with respect to dp. ♦

A direct computation shows that if p < 1 then the open ball

Br(x) =
{
y ∈ ℓp : dp(x, y) < r

}

is not convex (compare Figure 7.4).
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Fig. 7.4 Unit open balls B1(0) with respect to two metrics dp on R2. Left: p = 1/2. Right:

p = 3/4.

7.1.6 c0 and c00

We introduce two additional sequence spaces. These spaces, which are discrete
analogues of the function spaces C0(R) and Cc(R), are

c0 =
{

x = (xk)k∈N : lim
k→∞

xk = 0
}
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and
c00 =

{
x = (xk)k∈N : only finitely many xk 6= 0

}
.

The elements of c0 are sequences whose components “converge to zero at
infinity,” while the elements of c00 are sequences that “end with infinitely
many zeros.” If 0 < p < ∞, then

c00 ( ℓp ( c0 ( ℓ∞.

According to Problem 7.1.28, c0 is a closed subspace of ℓ∞ with respect to the
norm ‖ ·‖∞, and hence is itself a Banach space with respect to the sup-norm.
In contrast, Problem 7.1.29 shows that c00 is not complete with respect to
any norm ‖ · ‖p.

The elements of c00 are sometimes called finite sequences because they
contain at most finitely many nonzero components. If we recall the standard
basis vectors δn introduced in equation (7.14), we see that c00 is the set of all
finite linear combinations of the set of standard basis vectors E = {δn}n∈N,
because

c00 =
{

x = (x1, . . . , xN , 0, 0, . . . ) : N > 0, x1, . . . , xN ∈ C
}

=

{ N∑

k=1

xkδk : N > 0, x1, . . . , xN ∈ C

}
= span(E).

Since E spans c00 and E is linearly independent, we conclude that E is a basis
for c00 in the usual vector space sense. Such a “vector space basis” is also
called a Hamel basis (see Definition 1.2.2). However, E is not a Hamel basis
for c0 or ℓp because its span is only c00, which is a proper subset of c0 and ℓp.

Problems

7.1.19. Assume that 1 ≤ p < ∞. Given x = (xk)k∈N ∈ ℓp, prove that∑∞
k=1

|xk|
k < ∞. Show by example that this can fail if x ∈ ℓ∞.

7.1.20. Observe that ‖x‖∞ ≤ ‖x‖1 for every x ∈ ℓ1. Prove that there does
not exist a finite constant B > 0 such that the inequality ‖x‖1 ≤ B ‖x‖∞
holds for every x ∈ ℓ1.

7.1.21. Show that if 0 < p < q ≤ ∞ then ℓp ( ℓq, and ‖x‖q ≤ ‖x‖p for all
x ∈ ℓp.

7.1.22. Prove that if x ∈ ℓq for some finite index q, then ‖x‖p → ‖x‖∞ as
p → ∞. Give an example of a sequence x ∈ ℓ∞ for which this fails.
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7.1.23. Given 1 < p < ∞, show that equality holds in Hölder’s Inequality
(Theorem 7.1.7) if and only if there exist scalars α and β, not both zero, such
that α |xk|p = β |yk|p

′

for each k ∈ N. What about the cases p = 1 or p = ∞?

7.1.24. Prove the following generalization of Hölder’s Inequality. Assume
that 1 ≤ p, q, r ≤ ∞ satisfy 1

p + 1
q = 1

r . Given x = (xk)k∈N ∈ ℓp and

y = (yk)k∈N ∈ ℓq, prove that xy = (xkyk)k∈N belongs to ℓr, and

‖xy‖r ≤ ‖x‖p ‖y‖q.

7.1.25. Choose 1 ≤ p ≤ ∞, and let D = {x ∈ ℓp : ‖x‖p ≤ 1} be the “closed
unit disk” in ℓp. Observe that D is a bounded subset of ℓp, since it is contained
in an open ball of finite radius. Prove the following statements.

(a) D is a closed subset of ℓp, i.e., if {xn}n∈N is a sequence in D such that
xn → x in ℓp-norm, then x ∈ D.

(b) The sequence of standard basis vectors {δn}n∈N contains no convergent
subsequences.

(c) D is not a compact subset of ℓp (consider Theorem 1.1.10).

7.1.26. Fix 1 ≤ p < ∞.

(a) Let x = (xk)k∈N be a sequence of scalars that decays on the order of
k−α where α > 1/p. That is, assume that α > 1/p and there exists a constant
C > 0 such that

|xk| ≤ C k−α for all k ∈ N. (7.17)

Show that x ∈ ℓp.

(b) Set α = 1/p. Exhibit a sequence x /∈ ℓp that satisfies equation (7.17)
for some C > 0, and another sequence x ∈ ℓp that satisfies equation (7.17)
for some C > 0.

(c) Given α > 0, show that there exists a sequence x = (xk)k∈N ∈ ℓp such
that there is no constant C > 0 that satisfies equation (7.17). Conclude that
no matter how small we choose α, there exist sequences in ℓp whose decay
rate is slower than k−α.

(d) Suppose that the components of x = (xk)k∈N ∈ ℓp are nonnegative
and monotonically decreasing. Show that there exists some α ≥ 1/p and
some C > 0 such that equation (7.17) holds.

7.1.27. Given an arbitrary (possibly uncountable) index set I, let ℓ∞(I) be
the space of all bounded sequences x = (xi)i∈I , and set ‖x‖∞ = supi∈I |xi|.
For 1 ≤ p < ∞ let ℓp(I) consist of all sequences x = (xi)i∈I with at most
countably many nonzero components such that ‖x‖p

p =
∑ |xi|p < ∞. Prove

that ℓp(I) is a Banach space with respect to ‖ · ‖p.

7.1.28. Prove that c0 is a closed subspace of ℓ∞, i.e., if xn ∈ c0 and x ∈ ℓ∞

are such that ‖x − xn‖∞ → 0, then x ∈ c0. (Consequently, Problem 1.2.12
implies that c0 is a Banach space with respect to ‖ · ‖∞.)
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7.1.29. Prove the following statements (we implicitly assume that the norm
on ℓp is ‖ · ‖p, and the norm on c0 is ‖ · ‖∞).

(a) If 1 ≤ p < ∞, then c00 is a dense subspace of ℓp. Further, c00 is a dense
subspace of c0, but c00 is not dense in ℓ∞.

(b) If 1 ≤ p ≤ ∞, then c00 is not complete with respect to ‖ · ‖p. That
is, there exist vectors xn ∈ c00 such that {xn}n∈N is Cauchy with respect to
‖ · ‖p, but there is no vector x ∈ c00 such that xn → x in ℓp-norm.

7.1.30. (a) Suppose that
∑

xn is an absolutely convergent series in c0, i.e.,
xn ∈ c0 for every n ∈ N and

∑ ‖xn‖∞ < ∞. Prove directly that the series∑
xn converges with respect to the sup-norm, i.e., there exists a sequence

x ∈ c0 such that limN→∞

∥∥x − ∑N
n=1 xn

∥∥
∞

= 0.

(b) Use part (a) and Theorem 1.2.8 to give another proof that c0 is com-
plete with respect to ‖ · ‖∞.

7.2 The Lebesgue Space Lp(E)

According to Definition 4.4.1, a measurable function f is integrable on a set E
if the integral of |f | on E is finite. Now we refine that notion. Given an index
0 < p < ∞, we say that f is p-integrable if the integral of |f |p is finite. We
collect all of the p-integrable functions to form a space that we call Lp(E). For
p = ∞, we define L∞(E) to be the space of all essentially bounded functions
on E. These Lp spaces are the function space analogues of the ℓp spaces.

There are actually two versions of each space, one consisting of complex-
valued functions and one consisting of extended real-valued functions. En-
tirely similar results hold for both cases. As before, we treat both possibil-
ities together by letting the symbol F denote choice of either [−∞,∞] or
C. In conjunction with this, we let the word scalar denote a real number if
F = [−∞,∞], and a complex number if F = C (compare Notation 3.1.1).

Definition 7.2.1 (The Lebesgue Space Lp(E)). Let E be a measurable
subset of Rd.

(a) If 0 < p < ∞ and f : E → F is measurable, then we say that f is
p-integrable if

∫
E
|f |p < ∞. In this case we set

‖f‖p =

(∫

E

|f |p
)1/p

.

If f is not p-integrable then we take ‖f‖p = ∞. We define Lp(E) to be
the set of all p-integrable functions on E, and call Lp(E) the Lebesgue
space of p-integrable functions on E.
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(b) If p = ∞, then L∞(E) is the set of all measurable functions f : E → F
that are essentially bounded. That is, f belongs to L∞(E) if

‖f‖∞ = esssup
x∈E

|f(x)| < ∞.

We call L∞(E) the Lebesgue space of essentially bounded functions
on E. ♦

If E is an interval, then to avoid multiplicities of brackets and parentheses
we usually write Lp[a, b] instead of Lp([a, b]), Lp[a, b) instead of Lp([a, b)),
and so forth.

Remark 7.2.2. A complex-valued function never takes the values ±∞, so a
complex-valued function is (by definition) finite at every point. An extended
real-valued function f can take the values ±∞, but if f belongs to Lp(E)
then this can happen only on a set of measure zero. Hence every function in
Lp(E) is finite a.e. On the other hand, a function that is finite a.e. need not
belong to Lp(E). For example, f(x) = 1/x is finite a.e. on [0,∞), but it does
not belong to Lp[0,∞) for any p. ♦

In certain respects, the Lp spaces behave similarly to the ℓp spaces, and
consequently several proofs from Section 7.1 carry over to Lp(E) with only
minor changes. For example, a small modification of Lemma 7.1.4 shows that
Lp(E) is closed under addition of functions. We will state as exercises some
results for Lp whose proofs can be directly adapted from those for ℓp.

The similarity between ℓp and Lp(E) is a reflection of the deeper fact that
both of these are particular cases of a more general class of spaces Lp(µ),
where µ is a positive measure defined on a measurable space (X,Σ) that
consists of a set X and a σ-algebra Σ of subsets of X (compare Problem
4.5.33). If we take X = N and Σ = P(N), then ℓp is precisely Lp(µ) where
µ is counting measure on N. Likewise, Lp(E) = Lp(µ) where µ is Lebesgue
measure on X = E and Σ = L(E) is the set of all Lebesgue measurable
subsets of E. For more details on abstract measure theory, we refer to texts
such as [Fol99] or [Rud90].

Although ℓp and Lp(E) are similar in certain ways, in other respects their
properties are quite different. For example, while ℓ1 ⊆ ℓ∞ (Problem 7.1.21),
we have L∞(E) ⊆ L1(E) when |E| < ∞, and there is no inclusion between
L∞(E) and L1(E) when |E| = ∞ (see Problem 7.2.16). Another difference
concerns convergence, because convergence with respect to the norm of ℓp

implies componentwise convergence (Lemma 7.1.14), while convergence in
Lp-norm only implies the existence of a subsequence that converges pointwise
a.e. (see Theorem 7.3.4). Yet another difference is that the zero sequence is
the only sequence whose ℓp norm is zero, while any function that is zero
almost everywhere will have zero Lp norm, even though such a function need
not be identically zero.
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7.2.1 Seminorm Properties of ‖ · ‖p

We will show that ‖ · ‖p is a seminorm (but not a norm) on Lp(E) when
1 ≤ p ≤ ∞. The nonnegativity requirement is satisfied by definition, because
0 ≤ ‖f‖p < ∞ for all f ∈ Lp(E), and the homogeneity property ‖cf‖p =
|c| ‖f‖p follows directly. The proof that ‖ · ‖p satisfies the Triangle Inequality
for p = 1 and p = ∞ is straightforward (and in fact was already done in
Exercises 3.3.4 and 4.4.5). To prove the Triangle Inequality for 1 < p < ∞
we need Hölder’s Inequality for the Lp spaces. The proof is similar to the
corresponding result for ℓp, so we assign it as an exercise.

Exercise 7.2.3 (Hölder’s Inequality). Assume that E ⊆ Rd is measur-
able, and fix 1 ≤ p ≤ ∞. Prove that if f ∈ Lp(E) and g ∈ Lp′

(E), then
fg ∈ L1(E) and

‖fg‖1 ≤ ‖f‖p ‖g‖p′ . ♦ (7.18)

For indices in the range 1 < p < ∞, we can write Hölder’s Inequality in
the form ∫

E

|fg| ≤
(∫

E

|f |p
)1/p (∫

E

|g|p′

)1/p′

.

Note that if 1 < p < 2 then 2 < p′ < ∞, and similarly if 2 < p < ∞ then
1 < p′ < 2. For p = 2 we have “self-duality,” because 2′ = 2. This fact will be
especially important when we explore the Hilbert space properties of L2(E)
in Chapter 8.

If p = 1 then p′ = ∞, and in this case Hölder’s Inequality takes the form

∫

E

|fg| ≤
(∫

E

|f |
) (

esssup
x∈E

|g(x)|
)
.

The case p = ∞, p′ = 1 is entirely symmetrical and follows by interchanging
the roles of f and g in the preceding line.

The Triangle Inequality for ‖ · ‖p is also known as Minkowski’s Inequality.
We saw how to use Hölder’s Inequality to prove Minkowski’s Inequality for
the ℓp spaces in Theorem 7.1.15, and the proof for Lp(E) is similar.

Exercise 7.2.4 (Minkowski’s Inequality). Let E ⊆ Rd be a measurable
set, and fix 1 ≤ p ≤ ∞. Prove Minkowski’s Inequality :

‖f + g‖p ≤ ‖f‖p + ‖g‖p, for all f, g ∈ Lp(E). (7.19)

Conclude that ‖ · ‖p is a seminorm on Lp(E). ♦
Although ‖ · ‖p is a seminorm on Lp(E), it is not a norm because the

uniqueness requirement is not strictly satisfied. To be a norm, it would have
to be the case that ‖f‖p = 0 if and only if f is identically zero. However,
any function f that is zero almost everywhere satisfies ‖f‖p = 0. The next
theorem summarizes the properties of ‖ · ‖p.
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Theorem 7.2.5. If E ⊆ Rd is measurable and 1 ≤ p ≤ ∞, then the following
statements hold for all functions f, g ∈ Lp(E) and all scalars c.

(a) Nonnegativity: ‖f‖p ≥ 0.

(b) Homogeneity: ‖cf‖p = |c| ‖f‖p.

(c) The Triangle Inequality: ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

(d) Almost Everywhere Uniqueness: ‖f‖p = 0 if and only if f = 0 a.e.

Proof. We have already observed that ‖ · ‖p is a seminorm, so the only issue
is to show that statement (d) holds. For p = ∞, this follows from Corollary
2.2.29. On the other hand, if p is finite and ‖f‖p = 0 then

∫
E

|f |p = 0, so
Exercise 4.1.10 implies that |f |p = 0 a.e. ⊓⊔

Thus ‖ · ‖p is “almost” a norm on Lp(E). The seminorm properties are
satisfied, but the zero function is not the only function whose Lp-norm is
zero. Instead, ‖f‖p = 0 if and only if f = 0 almost everywhere.

7.2.2 Identifying Functions That Are Equal Almost

Everywhere

In most circumstances, the fact that ‖ · ‖p is a seminorm but not quite a
norm is only a minor nuisance. Changing the value of a function on a set of
measure zero does not change its integral, so as far as most purposes related to
integration are concerned, functions that are equal almost everywhere behave
identically. Consequently, if f and g are two measurable functions that are
equal a.e., then it is natural to identify them and regard them as being the
same object. For example, if ‖f‖p = 0 then f = 0 a.e., so with respect to this
identification f is the same object as the zero function and hence is the zero
element of Lp(E). Using this informal identification we have that

‖f‖p = 0 ⇐⇒ f = 0 a.e. ⇐⇒ f is the zero element of Lp(E).

Once we adopt this convention of identifying functions that are equal a.e.
the uniqueness requirement is automatically satisfied, so ‖ · ‖p is a norm on
Lp(E).

Notation 7.2.6 (Informal Convention for Elements of Lp(E)). We
take Lp(E) to be the set of all p-integrable functions on E, but if f and
g are two p-integrable functions that are equal almost everywhere then we
regard f and g as being the same element of Lp(E). In this case, we say that
f and g are representatives of this element of Lp(E). ♦

Problem 7.2.24 shows how to make this convention completely rigorous
by forming equivalence classes of functions. However, for most purposes the
informal approach of Notation 7.2.6 is sufficient. We must exercise some care;
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in particular, we should check that any definitions that we make or operations
that we perform on elements of Lp(E) are well-defined in the sense that they
do not depend on the choice of representative. Usually this is not difficult.

For example, the norm ‖f‖p =
(∫

E
|f |p

)1/p
does not depend on the choice of

representative, because if f = g almost everywhere then
∫

E
|f |p =

∫
E
|g|p. In

the same spirit, the following exercise asks for a justification that pointwise
a.e. convergence is well-defined on Lp(E).

Exercise 7.2.7. Let E be a measurable subset of Rd. Given fn, f ∈ Lp(E),
prove that pointwise a.e. convergence is independent of the choice of represen-
tatives of fn and f. That is, show that if fn → f pointwise a.e., gn = fn a.e.,
and g = f a.e., then gn → g a.e. ♦

The set of measure zero in Exercise 7.2.7 on which gn(x) does not converge
to g(x) could be different than the set of measure zero on which fn(x) does not
converge to f(x), but we still have pointwise a.e. convergence. Consequently,
it makes sense to say that elements of Lp(E) converge pointwise almost ev-
erywhere; this just means pointwise a.e. convergence of any representatives
of these functions.

In contrast, it does not make literal sense to say that an element of Lp(E)
is continuous, because continuity can depend on the choice of representative.
For example, 0 and χ

Q are both representatives of the zero function in Lp(R),
yet 0 is continuous while χ

Q is not. Consequently, we adopt the following
conventions.

Notation 7.2.8 (Continuity for Elements of Lp(E)).

(a) If f is a continuous function that is p-integrable on E, then we say that
“f belongs to Lp(E)” with the understanding that this means that any
function that equals f a.e. is the same element of Lp(E).

(b) We write “a function f ∈ Lp(E) is continuous” if there is a representative
of f that is continuous. That is, f is continuous if there exists some
continuous function g such that f = g a.e. ♦

For example, f(x) = e−|x| is continuous and p-integrable on R, so we
write e−|x| ∈ Lp(R), with the understanding that any function g that satisfies
g(x) = e−|x| a.e. is the same element of Lp(R).

7.2.3 Lp(E) for 0 < p < 1

We considered ℓp with 0 < p < 1 in Section 7.1.5, and saw that if p < 1 then
‖ · ‖p does not satisfy the Triangle Inequality, and therefore is not a norm on
ℓp. A similar phenomenon holds for Lp(E) when p < 1 (unless |E| = 0, in
which case Lp(E) only contains the zero function).
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Exercise 7.2.9. Let E be a measurable subset of Rd such that |E| > 0.
Prove that if 0 < p < 1, then the following statements hold.

(a) Lp(E) is a vector space, and

dp(f, g) = ‖f − g‖p
p =

∫

E

|f − g|p, for f, g ∈ Lp(E),

defines a metric on Lp(E).

(b) Lp(E) is complete with respect to the metric dp.

(c) The unit open ball B1(0) =
{
f ∈ Lp(E) : dp(f, 0) = ‖f‖p

p < 1
}

is not a
convex subset of Lp(E).

(d) The metric dp is not induced from any norm on Lp(E). That is, there
does not exist any norm ||| · ||| on Lp(E) such that dp(f, g) = |||f − g||| for
all f, g ∈ Lp(E). ♦

7.2.4 The Converse of Hölder’s Inequality

If we fix a function f ∈ Lp(E), then Hölder’s Inequality implies that

sup
‖g‖p′=1

∣∣∣∣
∫

E

fg

∣∣∣∣ ≤ sup
‖g‖p′=1

‖f‖p ‖g‖p′ = ‖f‖p. (7.20)

Our next theorem shows that equality holds in this equation.

Theorem 7.2.10 (Converse of Hölder’s Inequality). Let E be a mea-
surable subset of Rd, and fix 1 ≤ p ≤ ∞. Then for each function f ∈ Lp(E)
we have

sup
‖g‖p′=1

∣∣∣∣
∫

E

fg

∣∣∣∣ = ‖f‖p. (7.21)

Furthermore, this supremum is achieved. In fact, there exists a function g in
Lp′

(E) such that ‖g‖p′ = 1 and
∫

E
fg = ‖f‖p.

Proof. Assume first that 1 < p < ∞. Hölder’s Inequality gives us equation
(7.20), so we need to prove that equality holds. Fix f ∈ Lp(E). If f = 0 a.e.,
then the result is trivial, so we can assume that f is not the zero vector in
Lp(E). By choosing an appropriate representative of f (i.e., redefine f(x) at
any point in the set of measure zero where it takes the value ±∞), we can
further assume that f is finite at every point.

For each x, let α(x) be a scalar such that |α(x)| = 1 and α(x) f(x) = |f(x)|.
Explicitly, we can take

α(x) =

{
|f(x)|/f(x), if f(x) 6= 0,

0, if f(x) = 0.
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This function α is measurable and bounded. Set

g(x) =
α(x) |f(x)|p−1

‖f‖p−1
p

, for x ∈ E.

Since (p − 1) p′ = p,

‖g‖p′

p′ =

∫

E

( |f(x)|p−1

‖f‖p−1
p

)p′

dx =

∫
E
|f(x)|p dx

‖f‖p
p

= 1.

Thus g is a unit vector in Lp′

(E). Also,

∫

E

fg dx =

∫

E

f(x)
α(x) |f(x)|p−1

‖f‖p−1
p

dx

=

∫
E
|f(x)|p dx

‖f‖p−1
p

=
‖f‖p

p

‖f‖p−1
p

= ‖f‖p.

This shows that equality holds in equation (7.21), and that the supremum in
that equation is achieved.

Exercise: Complete the proof for the cases p = 1 and p = ∞. ⊓⊔

Problems

7.2.11. Fix 1 ≤ p ≤ ∞. Determine all values of α, β ∈ R for which fα(x) =
xα χ

[0,1](x) or gβ(x) = xβ χ
[1,∞)(x) belong to Lp(R).

7.2.12. Fix 1 ≤ p ≤ ∞, and let E be any measurable subset of Rd. Suppose
that fn ∈ Lp(E) for n ∈ N and fn → f a.e. Prove that if sup ‖fn‖p < ∞
then f ∈ Lp(E), but show by example that the assumption that {fn}n∈N is
a bounded sequence in Lp(E) is necessary.

7.2.13. Prove the following Lp version of Tchebyshev’s Inequality : If E ⊆ Rd

is a measurable set and f : E → F is a measurable function, then for each
α > 0 we have

∣∣{|f | > α}
∣∣ ≤ 1

αp

∫

{|f |>α}

|f |p ≤ 1

αp

∫

E

|f |p.

7.2.14. Let E ⊆ Rd be a measurable set such that |E| < ∞. Prove that if f
is measurable on E, then ‖f‖p → ‖f‖∞ as p → ∞. Show by example that
the hypothesis that E has finite measure is necessary.

7.2.15. Given 1 < p < ∞, show that equality holds in Hölder’s Inequality
if and only if there exist scalars α and β, not both zero, such that α |f |p =
β |g|p′

a.e.
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7.2.16. Let E be a measurable subset of Rd, and fix 0 < p < q ≤ ∞. Prove
the following statements.

(a) If 0 < |E| < ∞, then Lq(E) ( Lp(E) and

‖f‖p ≤ |E| 1p− 1
q ‖f‖q, for all f ∈ Lp(E).

(b) If |E| = ∞, then Lp(E) is not contained in Lq(E), and Lq(E) is not
contained in Lp(E).

7.2.17. Let E ⊆ Rm and F ⊆ Rn be measurable sets, let f(x, y) be a mea-
surable function on E × F, and fix 1 ≤ p < ∞. Prove Minkowski’s Integral
Inequality :

(∫

E

(∫

F

|f(x, y)| dy

)p

dx

)1/p

≤
∫

F

(∫

E

|f(x, y)|p dx

)1/p

dy. (7.22)

Remark: Equation (7.22) may be more revealing if we rewrite it as

∥∥∥∥
∫

F

|f(·, y)| dy

∥∥∥∥
p

≤
∫

F

‖f(·, y)‖p dy.

Thus, Minkowski’s Integral Inequality is an integral version of the Triangle
Inequality (also known as Minkowski’s Inequality) on Lp(E).

7.2.18. (a) Suppose that f is absolutely continuous on [a, b] and f ′ ∈ Lp[a, b],
where 1 < p ≤ ∞. Prove that f is Hölder continuous with exponent 1/p′.

(b) Show that the function g defined in Problem 1.4.4(d) is absolutely
continuous on [0, 1

2 ], even though it is not Hölder continuous for any positive
exponent.

7.2.19. Let 1 ≤ p ≤ ∞ be given. Suppose that φ is a measurable function
on R such that fφ ∈ Lp(R) for every f ∈ Lp(R). Prove that φ ∈ L∞(R).

7.2.20. Formulate an analogue of Problem 7.1.24 for the Lp spaces, and
then prove the following extension of Hölder’s Inequality. Assume that
1 ≤ p1, . . . , pn, r ≤ ∞ satisfy

1

p1
+ · · · + 1

pn
=

1

r
.

Given functions fj ∈ Lpj (E), prove that the product f1 · · · fn belongs to
L1(E), and ‖f1 · · · fn‖r ≤ ‖f1‖p1

· · · ‖fn‖pn
.

7.2.21. Given a measurable function f on a measurable set E ⊆ Rd, let
ω(t) =

∣∣{|f | > t}
∣∣ be the distribution function defined in Problem 4.6.21. Fix

1 ≤ p < ∞, and prove the following statements.

(a) f ∈ Lp(E) if and only if
∑

k∈Z 2kp ω(2k) < ∞.
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(b) f ∈ Lp(E) if and only if
∫ ∞

0
tp−1 ω(t) dt < ∞. Further, in this case,

∫

E

|f(x)|p dx = p

∫ ∞

0

tp−1 ω(t) dt.

7.2.22. Fix 1 < p < ∞, and let E be a measurable subset of Rd. Suppose
that there exists some constant C > 0 and some index p < q < ∞ such that

∫

A

|f | ≤ C |A|1/p′

and

∫

A

|f | ≤ C |A|1/q′

for every measurable set A ⊆ E. Prove that f ∈ Lr(E) for p < r < q.

7.2.23. Assume that E ⊆ Rd is measurable with |E| = 1, and fix f ∈ L1(E).

(a) Use Jensen’s Inequality to prove that
∫

E
ln |f | ≤ ln ‖f‖p for 0 < p < ∞.

(b) Prove that limp→0+ ‖f‖p = exp
(∫

E
ln |f |

)
.

7.2.24. Let E be a measurable subset of Rd, and fix 1 ≤ p ≤ ∞.

(a) Define a relation ∼ on Lp(E) by declaring that f ∼ g if and only if
f = g a.e. Show that ∼ is an equivalence relation on Lp(E).

(b) Let [f ] denote the equivalence class of f in Lp(E) with respect to the
relation ∼, i.e.,

[f ] =
{
g ∈ Lp(E) : g = f a.e.

}
.

Any particular function g ∈ [f ] is called a representative of the equivalence
class [f ]. Show that the quantity ||| [f ] |||p = ‖g‖p is independent of the choice
of representative g ∈ [f ], i.e., ‖g‖p = ‖h‖p for every choice of g, h ∈ [f ].

(c) Let L̃p(E) be the quotient space of Lp(E) with respect to ∼ . That is,

L̃p(E) =
{
[f ] : f ∈ Lp(E)

}
is the set of all distinct equivalence classes of

functions in Lp(E). Prove that ||| · |||p is a norm on L̃p(E), and L̃p(E) is a
Banach space with respect to this norm.

7.3 Convergence in Lp-norm

We have seen that, once we identify functions that are equal a.e., ‖ · ‖p is
a norm on Lp(E). Convergence in Lp(E) is, by definition, convergence with
respect to that norm, which we spell out precisely in the next definition.

Definition 7.3.1 (Convergence in Lp(E)). Let E be a measurable subset
of Rd and fix 1 ≤ p ≤ ∞.

(a) A sequence {fn}n∈N in Lp(E) converges to f ∈ Lp(E) if

lim
n→∞

‖f − fn‖p = 0. (7.23)
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In this case we write fn → f in Lp(E), or fn → f in Lp-norm, or for
emphasis we may say that fn → f with respect to ‖ · ‖p.

(b) A sequence {fn}n∈N in Lp(E) is Cauchy in Lp-norm if for every ε > 0
there exists some N > 0 such that

m, n ≥ N =⇒ ‖fm − fn‖p < ε. ♦

The reader should verify that convergence in Lp-norm is well-defined, i.e.,
it is independent of the choice of representatives of fn or f (and likewise for
the definition of a Cauchy sequence).

Remark 7.3.2. If p = ∞ then equation (7.23) says that

lim
n→∞

(
esssup

x∈E
|f(x) − fn(x)|

)
= 0.

On the other hand, if p is finite then equation (7.23) is equivalent to

lim
n→∞

∫

E

|f − fn|p = 0. ♦ (7.24)

For finite p, many of the facts that we proved about L1-norm convergence
have analogues for Lp-norm convergence. We list a few of these below.

Example 7.3.3. Fix 1 ≤ p < ∞.

(a) Convergence in Lp-norm does not imply pointwise a.e. convergence
in general. For example, the Boxes Marching in Circles from Example 3.5.5
converge to zero in Lp-norm, but they do not converge pointwise a.e.

(b) Pointwise a.e. convergence does not imply convergence in Lp-norm in
general. For example, fn = n1/p χ

[0, 1
n

] converges pointwise a.e. to the zero

function on [0,∞), but ‖fn‖p = 1 for every n so fn does not converge to zero
in Lp-norm. ♦

Theorem 7.3.4. Let E ⊆ Rd be a measurable set and fix 1 ≤ p ≤ ∞. If
fn, f ∈ Lp(E) and ‖f −fn‖p → 0, then fn

m→ f, and consequently there exists
a subsequence {fnk

}k∈N such that fnk
→ f pointwise a.e.

Proof. Tchebyshev’s Inequality for Lp-norms is formulated in Problem 7.2.13,
and convergence in measure follows from Tchebyshev’s Inequality much like
it does in the proof of Lemma 4.4.8. Then Lemma 3.5.6 implies the existence
of a subsequence that converges pointwise a.e. ⊓⊔

Figure 7.5 shows the main implications that hold between Lp-norm con-
vergence and other types of convergence criteria.

The next exercise establishes that Lp(E) is complete, i.e., all Cauchy se-
quences converge. The argument is similar to the one that we used to prove
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pointwise a.e.
convergence

Lp-norm
convergence

⇓ (if |E| < ∞) ⇓

L∞-norm
convergence

=⇒
almost uniform

convergence
=⇒

convergence
in measure

=⇒
pointwise a.e.
convergence of
a subsequence

⇓

pointwise a.e.
convergence

Fig. 7.5 Relations among certain convergence criteria (valid for sequences of functions

that are either complex-valued or extended real-valued but finite a.e.).

that ℓp is complete, but there are some complications due to the fact that
convergence in measure only implies the existence of a subsequence that con-
verges pointwise a.e. This exercise sketches one approach for the case of fi-
nite p; another approach is given in Problem 7.3.22.

Exercise 7.3.5. Let E be a measurable subset of Rd and fix 1 ≤ p < ∞.
Prove that if {fn}n∈N is a Cauchy sequence in Lp(E), then it is Cauchy
in measure in the sense of Definition 3.5.9. Therefore, by applying The-
orem 3.5.10 and Lemma 3.5.6, there exists a measurable function f such
that fn

m→ f, and a subsequence such that fnk
→ f pointwise a.e. Show that

f ∈ Lp(E) and ‖f − fnk
‖p → 0, and finally that fn → f in Lp-norm. ♦

For p = ∞, convergence in L∞-norm implies almost uniform convergence,
which implies pointwise a.e. convergence (however, pointwise a.e. convergence
does not imply L∞-norm convergence in general). The reader should use these
facts to prove that L∞(E) is also a complete space.

In summary, we have the following result (which some authors refer to as
the Riesz–Fischer Theorem).

Theorem 7.3.6 (Lp(E) is a Banach Space). Let E be a measurable subset
of Rd and fix 1 ≤ p ≤ ∞. If we identify functions that are equal almost
everywhere, then ‖ · ‖p is a norm on Lp(E) and Lp(E) is complete with
respect to this norm. ♦

7.3.1 Dense Subsets of Lp(E)

When trying to prove that some particular fact holds for all functions in
Lp(E), it is not unusual to find that it is easy to establish that the fact holds
for some special subclass of functions, but it is not so clear how to prove it
for arbitrary functions in Lp(E). A standard technique in this situation is to
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try to extend the result from the “easy” class to the entire space by applying
some type of approximation argument. Specifically, if every function in a
class S has a certain property P, if S is dense in Lp(E), and if we can show
that property P is preserved under limits in Lp-norm, then we can conclude
that every function in Lp(E) has property P. We used this technique to prove
several results about L1(E) in Section 4.5; now we consider Lp(E).

The abstract definition of density was given in Definition 1.1.5. For con-
venience, we restate some equivalent formulations of density for the specific
case of the Lp-norm as the following result.

Lemma 7.3.7 (Dense Subsets of Lp(E)). Let E ⊆ Rd be measurable, and
fix 1 ≤ p ≤ ∞. If S is a subset of Lp(E), then the following three statements
are equivalent.

(a) S is dense in Lp(E), i.e., the closure of S equals Lp(E).

(b) If f is any element of Lp(E), then there exist functions fn ∈ S such that
fn → f in Lp-norm.

(c) If f is any element of Lp(E), then for each ε > 0 there exists a function
g ∈ S such that ‖f − g‖p < ε. ♦

To illustrate, we will prove that the set of functions in Lp(E) that are com-
pactly supported is dense in Lp(E) when p is finite. We do need to be careful
about the meaning of “support” in this context. The support of a continuous
function is the closure of the set where f is nonzero. This definition cannot
literally be applied to elements of Lp(E) because it depends on the choice of
representative. For example, χ

Q and the zero function are representatives of
the same element of Lp(R), but the closure of the set where χ

Q is nonzero
is R, whereas the closure of the set where 0 is nonzero is the empty set. The
precise definition of the support of an element of Lp(E) is laid out in Prob-
lem 7.3.24, but for most purposes it is sufficient to declare, as we do next,
that an element of Lp(E) is compactly supported if it is zero a.e. outside of
some compact set.

Definition 7.3.8 (Compact Support). Let E ⊆ Rd be a measurable set,
and fix 1 ≤ p ≤ ∞. We say that a function f ∈ Lp(E) is compactly supported
if there exists a compact set K ⊆ Rd such that f(x) = 0 for almost every
x ∈ E\K. ♦

The reader should check that Definition 7.3.8 does not depend on the
choice of representative, i.e., if f is compactly supported and g = f a.e.,
then g is also compactly supported. Using this notation, we will prove that
the set of compactly supported functions in Lp(E) is a dense subset of Lp(E)
when p is finite. This is simply another way of saying that every element of
Lp(E) can be approximated as closely as we like in Lp-norm by a compactly
supported function (compare Lemma 4.5.4 for the case p = 1).
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Theorem 7.3.9 (Compactly Supported Functions Are Dense). Let
E ⊆ Rd be a measurable set. If 1 ≤ p < ∞, then

Lp
c(E) =

{
f ∈ Lp(E) : f is compactly supported

}

is dense in Lp(E).

Proof. Choose f ∈ Lp(E), and for each n ∈ N define fn = f · χ
E ∩ [−n,n]d .

Then f − fn → 0 pointwise a.e., and

|f − fn|p = |f · χE\[−n,n]d |p ≤ |f |p ∈ L1(E).

The Dominated Convergence Theorem therefore implies that |f − fn|p → 0
in L1-norm, which is precisely the same as saying that fn → f in Lp-norm.
Since each fn is compactly supported, we conclude that the set of compactly
supported functions in Lp(E) is dense in Lp(E). ⊓⊔

The conclusion of Theorem 7.3.9 can fail if p = ∞. For example, if f = 1
is the function that is identically 1, then ‖f − g‖∞ ≥ 1 for every compactly
supported function g. The constant function 1 cannot be well-approximated
in L∞-norm by compactly supported functions.

We give several exercises which establish that certain subsets are dense in
Lp(E). Additional density results appear in the problems for this section.

Exercise 7.3.10 (Simple Functions Are Dense). Assume that E ⊆ Rd

is measurable and fix 1 ≤ p ≤ ∞. Prove the following statements.

(a) The set S of all simple functions in Lp(E) is is dense in Lp(E).

(b) If p is finite, then the set Sc of all compactly supported simple functions
on E is dense in Lp(E). ♦

Exercise 7.3.11 (Continuous Functions Are Dense). The space Cc(R
d)

consists of all continuous, compactly supported functions on Rd. Prove the
following statements.

(a) Cc(R
d) is dense in Lp(Rd) for 1 ≤ p < ∞.

(b) With respect to the L∞-norm, Cc(R
d) is dense in

C0(R
d) =

{
f ∈ C(Rd) : lim

‖x‖→∞
f(x) = 0

}
,

where the limit means that for each ε > 0 there exists some compact set
K such that |f(x)| < ε for all x /∈ K. ♦

Exercise 7.3.12 (Really Simple Functions Are Dense). Fix 1 ≤ p < ∞.

(a) Let R be the set of all really simple functions on R,
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R =

{ N∑

k=1

ck χ
[ak,bk) : N > 0, ck scalar, ak < bk ∈ R

}
.

Prove that R is dense in Lp(R) when p is finite. ♦

Problems

7.3.13. Fix 1 < p ≤ ∞. Show that there exist functions fn ∈ Lp[0, 1] such
that ‖fn‖1 = 1 for every n but ‖fn‖p → ∞ as n → ∞.

7.3.14. Suppose that E ⊆ Rd is measurable, and 1 ≤ p < q ≤ ∞. Show that
if fn ∈ Lp(E) ∩ Lq(E), fn → f in Lp-norm, and fn → g in Lq-norm, then
f = g a.e.

7.3.15. Let E be a measurable subset of Rd and fix 1 ≤ p < ∞.

(a) Given f, g ∈ Lp(E), show that 2p
(
|f |p + |g|p

)
− |f − g|p ≥ 0 a.e.

(b) Suppose that fn, f ∈ Lp(E) and fn → f a.e. Prove that fn → f in
Lp-norm if and only if ‖fn‖p → ‖f‖p.

7.3.16. Prove that if 1 ≤ p < ∞ and f ∈ Lp(Rd), then lima→0 ‖Taf − f‖p =
0, where Taf(x) = f(x − a).

7.3.17. Formulate a definition of “really simple functions” on Rd, and prove
that the really simple functions are dense in Lp(Rd), but not in L∞(Rd).

7.3.18. Let E be a measurable subset of Rd. Prove that if 1 ≤ p < r < q ≤ ∞,
then Lp(E) ∩ Lq(E) is a dense subset of Lr(E).

7.3.19. Fix 1 ≤ p < ∞, and let [a, b] be a closed bounded interval. Prove
that the set P of all polynomials is dense in Lp[a, b]. What space is P dense
in with respect to the L∞-norm?

7.3.20. Fix 1 ≤ p < ∞. For all j, k ∈ Z, let Ijk =
[

k
2j , k+1

2j

)
be a dyadic

interval and let D =
{
χIjk

: j, k ∈ Z
}

be the set of all characteristic functions
of dyadic intervals. Prove that span(D) is dense in Lp(R).

7.3.21. Let E ⊆ Rd be measurable, and choose 1 < p < ∞. Assume that
functions fn ∈ Lp(E) satisfy fn → f a.e. and sup ‖fn‖p < ∞. Prove that

f ∈ Lp(E), and for each g ∈ Lp′

(E) we have that limn→∞

∫
E

fng =
∫

E
fg.

Does the same result hold if p = 1?

7.3.22. Let E be a measurable subset of Rd and fix 1 ≤ p < ∞.

(a) Suppose that
∑

fn is an absolutely convergent series in Lp(E), i.e.,
fn ∈ Lp(E) for n ∈ N and

∑∞
n=1 ‖fn‖p < ∞. Prove that:
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• the series f(x) =
∑∞

n=1 fn(x) converges for a.e. x ∈ E,

• f ∈ Lp(E), and

• the series f =
∑∞

n=1 fn converges in Lp-norm, i.e., lim
N→∞

∥∥∥f−
N∑

n=1

fn

∥∥∥
p

= 0.

(b) Use part (a) and Theorem 1.2.8 to give another proof that Lp(E) is
complete with respect to ‖ · ‖p.

(c) Show that if
∑

fn is an absolutely convergent series in L1(E), then

∫

E

∞∑

n=1

fn =
∞∑

n=1

∫

E

fn.

7.3.23. Fix 1 ≤ p < ∞. Given fn ∈ Lp(Rd), prove that fn → f in Lp(Rd) if
and only if the following three conditions hold.

(a) fn
m→ f.

(b) For each ε > 0 there exists a δ > 0 such that for every measurable set
E ⊆ Rd satisfying |E| < δ we have

∫
E
|fn|p < ε for every n.

(c) For each ε > 0 there exists a measurable set E ⊆ Rd such that |E| < ∞
and

∫
EC |fn|p < ε for every n.

7.3.24. Define the support of a function f ∈ Lp(Rd) to be

supp(f) =
⋂ {

F ⊆ Rd : F is closed and f(x) = 0 for a.e. x /∈ F
}
.

Prove the following statements.

(a) supp(f) does not depend on the choice of representative of f, i.e., if
f = g a.e., then supp(f) = supp(g).

(b) f is compactly supported in the sense of Definition 7.3.8 if and only if
supp(f) is compact.

(c) If f is continuous, then supp(f) coincides with the usual definition of
the support of f (the closure of {f 6= 0}).

7.3.25. Let E be a measurable subset of Rd and fix 1 ≤ p < q ≤ ∞. Prove
the following statements.

(a) ‖f‖ = ‖f‖p + ‖f‖q is a norm on Lp(E) ∩ Lq(E), and Lp(E) ∩ Lq(E)
is a Banach space with respect to this norm.

(b) If 1 ≤ p < r < q ≤ ∞, then Lp(E) ∩ Lq(E) ⊆ Lr(E) and

‖f‖r ≤ ‖f‖θ
p ‖f‖1−θ

q , where
θ

p
+

1 − θ

q
=

1

r
.
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7.3.26. Let E ⊆ Rd be a measurable set such that |E| < ∞, and let M(E)
be the vector space of all Lebesgue measurable functions f : E → F that are
finite a.e. Show that if we identify functions in M(E) that are equal almost
everywhere, then the following statements hold.

(a) d(f, g) =

∫

E

|f(x) − g(x)|
1 + |f(x) − g(x)| dx defines a metric on M(E).

(b) The convergence criterion induced by the metric d is convergence in

measure, i.e., fk
m→ f if and only if limk→∞ d(f, fk) = 0.

(c) M(E) is complete with respect to the metric d, i.e., if {fk}k∈N is a
sequence that is Cauchy with respect to the metric d, then there exists some
f ∈ M(E) such that fk

m→ f.

7.4 Separability of Lp(E)

We will prove in this section that Lp(E) is separable when p is finite. To moti-
vate the definition of separability, recall that although the set of rationals is a
countable set and hence is “small” in terms of cardinality, it is a “large” sub-
set of R in the topological sense, since Q is dense in R. In higher dimensions,
the set Qd consisting of vectors with rational components is a countable yet
dense subset of Rd. It may seem unlikely that an infinite-dimensional space
could contain a countable, dense subset, yet we will see that this is true of
Lp(E) when p is finite. In contrast, we will show that L∞(E) does not contain
a countable dense subset (unless |E| = 0). Loosely speaking, a nonseparable
space is “much larger” than a separable space. We recall the precise definition
from Section 1.1.2.

Definition 7.4.1 (Separable Space). A metric space that contains a
countable dense subset is said to be separable. ♦

To show that Lp(R) is separable when p is finite, let S be the set of all
characteristic functions of the form χ

[a,b),

S =
{
χ

[a,b) : −∞ < a < b < ∞
}
,

and let R be its finite linear span, which is the set of all really simple func-
tions:

R = span(S) =

{ N∑

k=1

ck χ
[ak,bk) : N > 0, ck scalar, ak < bk ∈ R

}
.

Exercise 7.3.12 showed that R is dense in Lp(R). However, R is an uncount-
able set. Can we find a countable subset of R that is still dense? To do this,
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let SQ be the subset of S that consists of characteristic functions of intervals
whose endpoints are rational:

SQ =
{
χ

[a,b) : a < b ∈ Q
}
.

This set is a countable, but it is not dense. We could consider the span
of SQ, but that is uncountable because it contains all possible finite linear
combinations of elements of SQ. Therefore, we instead consider the “rational
span,” which is the set of all finite linear combinations that only employ
rational scalars. Recalling that we say that a complex scalar is rational if
both its real and imaginary parts are rational, this rational span is

RQ =

{ N∑

k=1

ck χ
[ak,bk) : N > 0, ck is rational, ak < bk ∈ Q

}
.

We will prove that RQ is dense in Lp(R). This implies that Lp(R) is separable
(alternative approaches are given in Problems 7.3.19 and 7.3.20).

Theorem 7.4.2 (Separability of Lp(R)). If 1 ≤ p < ∞, then Lp(R) con-
tains a countable dense subset and therefore is separable.

Proof. Choose any f ∈ Lp(R) and fix ε > 0. By Exercise 7.3.12, there exists

a really simple function g =
∑N

k=1 tk χ
[ck,dk) ∈ R such that ‖f − g‖p < ε.

Without loss of generality, we may assume that tk 6= 0 for each k. Choose
rational real numbers ak, bk with ak < ck and bk > dk such that

ck − ak <
1

2

(
ε

N |tk|

)p

and bk − dk <
1

2

(
ε

N |tk|

)p

.

Now choose rational scalars rk such that

|tk − rk| <
ε

N (bk − ak)1/p
.

Then the function h =
∑N

k=1 rk χ
[ak,bk) belongs to RQ, and we compute that

‖tk χ
[ck,dk) − rk χ

[ak,bk)‖p

≤ ‖tk χ
[ck,dk) − tk χ

[ak,bk)‖p + ‖tk χ
[ak,bk) − rk χ

[ak,bk)‖p

= |tk| ‖χ[ak,bk)\[ck,dk)‖p + |tk − rk| ‖χ[ak,bk)‖p

= |tk|
(
(ck − ak) + (bk − dk)

)1/p
+ |tk − rk| (bk − ak)1/p

≤ |tk|
(

1

2

(
ε

N |tk|

)p

+
1

2

(
ε

N |tk|

)p )1/p

+
ε

N (bk − ak)1/p
(bk − ak)1/p

=
ε

N
+

ε

N
=

2ε

N
.
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Therefore

‖g − h‖p =

∥∥∥∥
N∑

k=1

(
tk χ

[ck,dk) − rk χ
[ak,bk)

)∥∥∥∥
p

≤
N∑

k=1

‖tk χ
[ck,dk) − rk χ

[ak,bk)‖p ≤ 2ε,

and consequently

‖f − h‖p ≤ ‖f − g‖p + ‖g − h‖p ≤ 3ε.

Thus RQ is dense in Lp(R). Since RQ is countable, this shows that Lp(R) is
separable. ⊓⊔

As a corollary, we prove that Lp(E) is separable for all measurable E ⊆ R.

Corollary 7.4.3 (Separability of Lp(E)). Let E ⊆ R be measurable, and
fix 1 ≤ p < ∞. If S is any countable, dense subset of Lp(R), then

S(E) =
{
f · χE : f ∈ S

}

is a countable dense subset of Lp(E). Consequently, Lp(E) contains a count-
able dense subset, and therefore is separable.

Proof. Choose any f ∈ Lp(E), and fix ε > 0. Extend f to all of R by setting
f(x) = 0 for x /∈ E. Then f ∈ Lp(R), so there exists a function g ∈ S such
that ‖f − g‖Lp(R) < ε. But then h = g · χE belongs to S(E), and it satisfies

‖f − h‖p
Lp(E) =

∫

E

|f − h|p =

∫

R

|f − g|p = ‖f − g‖p
Lp(R) < εp.

Hence S(E) is a countable, dense subset of Lp(E). ⊓⊔

Extensions of Theorem 7.4.2 and Corollary 7.4.3 to higher dimensions are
given in Problem 7.4.10.

The situation for p = ∞ is quite different. To motivate this, note that in
Rd we can find up to d + 1 vectors that are each unit distance from each
other (for example, consider the three vertices of an equilateral triangle in
R2, or the four vertices of a regular tetrahedron in R3). Not surprisingly,
in an infinite-dimensional normed space we can find infinitely many vectors
such that any pair are at least unit distance apart. However, in some spaces
we can find only countably many such vectors, while in others we can find
uncountably many. The following result shows that any metric space that
contains uncountably many “separated” elements must be nonseparable.

Theorem 7.4.4. If X is a metric space and there exists an uncountable set
A ⊆ X such that d(x, y) ≥ 1 for every x 6= y ∈ A, then X is not separable.
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Proof. Let S be a dense subset of X. If we choose any point t ∈ A then,
since S is dense, there must exist some xt ∈ S such that ‖t − xt‖∞ < 1

2 .
Consequently, if y 6= z ∈ A, then

1 ≤ d(y, z) ≤ d(y, xy) + d(xy, xz) + d(xz, z) <
1

2
+ d(xy, xz) +

1

2
.

Therefore d(xy, xz) > 0, which tells us that xy and xz are distinct elements
of S. Hence t 7→ xt is an injective mapping from A into S, so S must be
uncountable. ⊓⊔

We will use Theorem 7.4.4 to show that L∞(R) is nonseparable. If we set
fa = χ

[a,a+1] for a ∈ R, then ‖fa−fb‖∞ = 1 whenever a 6= b (see Figure 7.6).
Therefore {fa}a∈R is an uncountable separated family in L∞(R), so Theorem
7.4.4 implies that L∞(R) is nonseparable. The same is true of L∞(E) for any
measurable set E ⊆ Rd that has positive measure, although it takes a bit more
work to construct an uncountable “separated” family for a generic set E (this
is Problem 7.4.10).

0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

Fig. 7.6 Graph of fa − fb for fa = χ
[0.3,1.3] and fb = χ

[0.4,1.4]. Note that fa − fb = ±1
on a set with positive measure, and hence ‖fa − fb‖∞ = 1.

Problems

7.4.5. Fix 1 ≤ p ≤ ∞. Suppose that f ∈ Lp(R) and
∫

R
f φ = 0 for all

φ ∈ Cc(R). Prove that f = 0 a.e.

7.4.6. Let X be a normed space, and suppose that there exists a countable
sequence F = {xn}n∈N in X such that

span(F) =

{ N∑

n=1

cnxn : N ∈ N, cn scalar

}
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is dense in X (such a sequence is said to be complete in X, see Definition
8.2.17). Prove that the rational span of F ,

S =

{ N∑

n=1

rnxn : N ∈ N, rn rational

}
,

is a countable, dense subset of X, and therefore X is separable.

7.4.7. Prove the following statements.

(a) c0 is separable (with respect to the sup-norm), but ℓ∞ is not separable.

(b) ℓp is separable for 1 ≤ p < ∞.

(c) If I is an uncountable index set and ℓp(I) is the space defined in
Problem 7.1.27, then ℓp(I) is nonseparable for every p.

7.4.8. Use Problems 7.3.19 and 7.3.20 to prove that Lp[a, b] and Lp(R) are
separable.

7.4.9. Prove that C[a, b] and C0(R) are separable (with respect to the uni-
form norm).

7.4.10. Given a measurable set E ⊆ Rd such that |E| > 0, prove that Lp(E)
is separable for 1 ≤ p < ∞, but L∞(E) is not separable.

7.4.11. A sequence {xn}n∈N is a Schauder basis for a Banach space X if for
each vector x ∈ X there exist unique scalars cn(x) such that

x =

∞∑

n=1

cn(x)xn, (7.25)

where this series converges in the norm of X. Prove the following statements.

(a) If 1 ≤ p < ∞ then the standard basis E = {δn}n∈N is a Schauder basis
for ℓp.

(b) The standard basis E = {δn}n∈N is a Schauder basis for c0 (with
respect to the sup-norm), but it is not a Schauder basis for ℓ∞.

(c) {yn}n∈N, where yn = (1, . . . , 1, 0, 0, . . . ), is a Schauder basis for c0.

(d) If {xn}n∈N is a Schauder basis for a Banach space X, then {xn}n∈N is
finitely linearly independent and span{xn}n∈N is dense in X. Apply Problem
7.4.6 and conclude that X is separable.

(e) The set of monomials M = {1, x, x2, . . . } is not a Schauder basis for
the Banach space C[0, 1] (with respect to the uniform norm), but it is linearly
independent and span(M) is dense in C[0, 1].

(f)* Can you construct a Schauder basis for C[0, 1] or Lp[0, 1]?



Chapter 8

Hilbert Spaces and L2(E)

We will see in this chapter that L2(E) holds a special place among the
Lebesgue spaces Lp(E), because the norm on L2(E) is induced from an inner
product. An inner product allows us to determine the angle between vectors,
not just the distance between them. Once we have angles, we have a notion of
orthogonality, and from this we can define orthogonal projections and ortho-
normal bases. This provides us with an extensive set of tools for analyzing
L2(E) (and ℓ2) that are not available to us when p 6= 2.

We introduce inner products in an abstract setting in Section 8.1, and
examine orthogonality in detail in Section 8.2. In Section 8.3 we prove that
every separable Hilbert space has an orthonormal basis, which provides con-
venient, stable representations of vectors in the space. We construct some
examples of orthonormal bases for L2[0, 1] and L2(R) in that section, then
examine in detail the trigonometric system (which is the basis for Fourier
series) in Section 8.4.

8.1 Inner Products and Hilbert Spaces

In a normed vector space, each vector has an assigned length, and from this
we obtain the distance from x to y as the length of the vector x − y. For
vectors in Rd or Cd we also know how to measure the angle between vectors;
in particular, two vectors x and y in Euclidean space are perpendicular, or
orthogonal, if their dot product is zero. In this section we will study vector
spaces that have an inner product, which is a generalization of the dot prod-
uct. Using the inner product, we can develop the notion of orthogonality in
abstract spaces.
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8.1.1 The Definition of an Inner Product

Here are the defining properties of an inner product (recall that in this text
we always take the scalar field associated with a vector space to be either the
real line R or the complex plane C).

Definition 8.1.1 (Semi-Inner Product, Inner Product). Let H be a
vector space. A semi-inner product on H is a scalar-valued function 〈·, ·〉 on
H × H such that for all vectors x, y, z ∈ H and all scalars a and b we have:

(a) Nonnegativity: 0 ≤ 〈x, x〉 < ∞,

(b) Conjugate Symmetry: 〈x, y〉 = 〈y, x〉, and

(c) Linearity in the First Variable: 〈ax + by, z〉 = a〈x, z〉 + b〈y, z〉.
If a semi-inner product 〈·, ·〉 also satisfies:

(d) Uniqueness: 〈x, x〉 = 0 if and only if x = 0,

then it is an inner product on H. In this case, H is called an inner product
space or a pre-Hilbert space. ♦

The usual dot product

u · v = u1v1 + · · · + udvd (8.1)

is an inner product on Rd or Cd (of course, on Rd the complex conjugate in
equation (8.1) is superfluous; similarly, if H is a real vector space then the
complex conjugate in the definition of conjugate symmetry is irrelevant).

If 〈·, ·〉 is a semi-inner product on a vector space H, then for each x ∈ H
we set

‖x‖ = 〈x, x〉1/2.

By definition, ‖x‖ is a nonnegative, finite real number. We will prove in
Lemma 8.1.4 that ‖ · ‖ is a seminorm on H, and therefore we refer to ‖ · ‖
as the seminorm induced by 〈·, ·〉. Likewise, we will see that if 〈·, ·〉 is an
inner product then ‖ · ‖ is a norm, so in this case we call ‖ · ‖ the norm
induced by 〈·, ·〉. It may be possible to place other norms on H, but unless we
explicitly state otherwise, we assume that all norm-related statements on an
inner product space are taken with respect to this induced norm.

8.1.2 Properties of an Inner Product

The following exercise gives some basic properties of an inner product.

Exercise 8.1.2. Prove that if 〈·, ·〉 is a semi-inner product on a vector space
H, then the following statements hold for all vectors x, y, z ∈ H and all
scalars a and b.
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(a) Antilinearity in the Second Variable: 〈x, ay + bz〉 = a 〈x, y〉 + b 〈x, z〉.
(b) Polar Identity: ‖x + y‖2 = ‖x‖2 + 2Re〈x, y〉 + ‖y‖2.

(c) Pythagorean Theorem: If 〈x, y〉 = 0, then ‖x ± y‖2 = ‖x‖2 + ‖y‖2.

(d) Parallelogram Law: ‖x + y‖2 + ‖x − y‖2 = 2
(
‖x‖2 + ‖y‖2

)
. ♦

The next inequality is known by several names, including the Schwarz
Inequality, the Cauchy–Schwarz Inequality, and the Cauchy–Bunyakovski–
Schwarz Inequality (or simply the CBS Inequality).

Theorem 8.1.3 (Cauchy–Bunyakovski–Schwarz Inequality). If 〈·, ·〉 is
a semi-inner product on a vector space H, then

|〈x, y〉| ≤ ‖x‖ ‖y‖, for all x, y ∈ H.

Proof. Assume that x and y are both nonzero, and let α be a scalar with
modulus 1 such that 〈x, y〉 = α |〈x, y〉|. Then for each t ∈ R, by using the
Polar Identity and antilinearity in the second variable, we compute that

0 ≤ ‖x − αty‖2 = ‖x‖2 − 2Re
(
〈x, αty〉

)
+ t2 ‖y‖2

= ‖x‖2 − 2t Re
(
α 〈x, y〉

)
+ t2 ‖y‖2

= ‖x‖2 − 2t |〈x, y〉| + t2 ‖y‖2

= at2 + bt + c,

where a = ‖y‖2, b = −2 |〈x, y〉|, and c = ‖x‖2. This is a real-valued quadratic
polynomial in the variable t. Since this polynomial is nonnegative, it can have
at most one real root. This implies that the discriminant b2 − 4ac cannot be
strictly positive. Hence

b2 − 4ac =
(
−2 |〈x, y〉|

)2 − 4 ‖x‖2 ‖y‖2 ≤ 0,

and the result follows by rearranging this inequality. ⊓⊔

By combining the Polar Identity with the Cauchy–Bunyakovski–Schwarz
Inequality, we can now prove that the induced seminorm ‖ · ‖ is indeed a
seminorm on H.

Lemma 8.1.4. Let H be a vector space. If 〈·, ·〉 is a semi-inner product on H,
then ‖ · ‖ is a seminorm on H, and if 〈·, ·〉 is an inner product on H, then
‖ · ‖ is a norm on H.

Proof. The only property that is not obvious is the Triangle Inequality. To
prove this, we compute that
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‖x + y‖2 = ‖x‖2 + 2Re〈x, y〉 + ‖y‖2 (Polar Identity)

≤ ‖x‖2 + 2 |〈x, y〉| + ‖y‖2 (|Re(z)| ≤ |z| for all scalars z)

≤ ‖x‖2 + 2 ‖x‖ ‖y‖ + ‖y‖2 (CBS Inequality)

=
(
‖x‖ + ‖y‖

)2
. ⊓⊔

Since the induced norm is a norm, all of the definitions and properties
derived for norms in Chapter 1 apply to the induced norm. In particular, we
have notions of convergence for sequences and infinite series. These can be
used to derive the following further properties of inner products.

Exercise 8.1.5. Given an inner product space H, prove that the following
statements hold.

(a) Continuity of the inner product: If xn → x and yn → y in H, then
〈xn, yn〉 → 〈x, y〉.

(b) If the series
∑∞

n=1 xn converges in H, then

〈 ∞∑

n=1

xn, y

〉
=

∞∑

n=1

〈xn, y〉, for all y ∈ H. ♦ (8.2)

Since an infinite series is a limit of the partial sums of the series, both the
linearity of the inner product in the first variable and the continuity of the
inner product are required to justify equation (8.2).

8.1.3 Hilbert Spaces

Just as in metric or normed spaces, in any inner product space it is important
to know whether all Cauchy sequences converge. We give the following name
to those inner product spaces that have this property.

Definition 8.1.6 (Hilbert Space). An inner product space H is called a
Hilbert space if it is complete with respect to the induced norm. ♦

That is, an inner product space is a Hilbert space if and only if every
Cauchy sequence in H converges to an element of H. Equivalently, a Hilbert
space is an inner product space that is a Banach space with respect to its
induced norm. For example, Rd and Cd are Hilbert spaces with respect to the
usual dot product given in equation (8.1). We will show that ℓ2 and L2(E)
are also Hilbert spaces with respect to an appropriate inner product.

Example 8.1.7 (The ℓ2-Inner Product). Recall that ℓ2 is the space of all
square-summable sequences of scalars. We proved in Section 7.1 that ℓ2 is
a Banach space with respect to the ℓ2-norm. Now we will define an inner
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product on ℓ2. By Hölder’s Inequality, if x = (xk)k∈N and y = (yk)k∈N be-
long to ℓ2, then

∞∑

k=1

|xkyk| ≤
( ∞∑

k=1

|xk|2
)1/2 ( ∞∑

k=1

|yk|2
)1/2

= ‖x‖2 ‖y‖2 < ∞. (8.3)

Consequently, we can set

〈x, y〉 =

∞∑

k=1

xk yk, (8.4)

because this is an absolutely convergent series of scalars. The reader should
check that equation (8.4) defines an inner product on ℓ2. We have

〈x, x〉 =
∞∑

k=1

xk xk =
∞∑

k=1

|xk|2 = ‖x‖2
2,

so the norm induced from this inner product is precisely the ℓ2-norm. Since
we already know that ℓ2 is complete with respect to this norm, we conclude
that ℓ2 is a Hilbert space with respect to this inner product. ♦

Example 8.1.8 (The L2-Inner Product). Let E be a measurable subset of
Rd. The space L2(E) consists of all square-integrable functions on E (see
Definition 7.2.1). If f and g belong to L2(E), then Hölder’s Inequality implies
that f g is integrable, so we can define

〈f, g〉 =

∫

E

f(x) g(x) dx. (8.5)

The reader can check that this defines an inner product on L2(E) (when
we identify functions that are equal a.e.). The norm induced from this inner
product is the L2-norm ‖ · ‖2. Since we know that L2(E) is complete with
respect to this norm, it follows that L2(E) is a Hilbert space with respect to
the inner product defined in equation (8.5). ♦

There are inner products on ℓ2 or L2(E) other than the ones given above,
but unless we explicitly state otherwise, we always assume that the inner
products on ℓ2 or L2(E) are the ones specified in equations (8.4) and (8.5).

Problems

8.1.9. Let 〈·, ·〉 be a semi-inner product on a vector space H. Show that
equality holds in the Cauchy–Bunyakovski–Schwarz Inequality if and only
if there exist scalars α and β, not both zero, such that ‖αx + βy‖ = 0. In
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particular, if 〈·, ·〉 is an inner product, then either x = cy or y = cx where c
is a scalar.

8.1.10. Let H be a Hilbert space. Given vectors xn and x in H, we say that
xn converges weakly to x if 〈xn, y〉 → 〈x, y〉 for every y ∈ H. Prove that
xn → x (convergence in norm) if and only if xn converges weakly to x and
‖xn‖ → ‖x‖.

8.1.11. Let E be a measurable subset of Rd such that |E| > 0. Show that if
1 ≤ p ≤ ∞ and p 6= 2, then ‖ · ‖p does not satisfy the Parallelogram Law.
Consequently, the norm on Lp(E) is not induced from any inner product,
i.e., there is no inner product 〈·, ·〉 on Lp(E) such that 〈f, f〉 = ‖f‖2

p for all
f ∈ Lp(E).

8.1.12. Suppose that f is positive and monotone increasing on (0,∞), and
f ∈ AC[a, b] for every finite interval [a, b]. Suppose that there is a constant
C > 0 such that f(x) ≤ Cx2 for all x > 0. Prove that

∫ ∞

0
1/f ′ = ∞.

8.1.13. Let H be the set of all absolutely continuous functions f ∈ AC[a, b]
such that f ′ ∈ L2[a, b]. Prove that H is a Hilbert space with respect to the

inner product 〈f, g〉 =
∫ b

a
f(x) g(x) dx +

∫ b

a
f ′(x) g′(x) dx.

8.1.14. This problem will establish a special case of Hardy’s Inequalities.
Prove that if f ∈ L2[0,∞), then

∣∣∣∣
∫ x

0

f(t) dt

∣∣∣∣
2

≤ 2x1/2

∫ x

0

t1/2 |f(t)|2 dt, for x ≥ 0.

Then define F (x) = 1
x

∫ x

0
f(t) dt for x ≥ 0, and show that F ∈ L2[0,∞) and

‖F‖2 ≤ 2‖f‖2.

8.1.15. Assume that f ∈ L2(Rd) and g ∈ L1(Rd) are both nonnegative.

(a) Use Tonelli’s Theorem to prove that the convolution (f ∗ g)(x) =∫
f(y) g(x − y) dy exists a.e. and is measurable.

(b) Apply the CBS Inequality with factors f(y) g(x−y)1/2 and g(x−y)1/2

to prove that

|(f ∗ g)(x)| ≤ ‖g‖1

∫

Rd

|f(y)|2 |g(x − y)| dy,

and from this show that f ∗ g ∈ L2(Rd) and ‖f ∗ g‖2 ≤ ‖f‖2 ‖g‖1.

(c) Prove that parts (a) and (b) hold for all functions f ∈ L2(Rd) and
g ∈ L1(Rd), nonnegative or not.

8.1.16. Let fn, f ∈ L2[a, b] be given, and for x ∈ [a, b] define

Fn(x) =

∫ x

a

fn(t) dt and F (x) =

∫ x

a

f(t) dt.
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Prove the following statements.

(a) If fn → f in L2-norm, then Fn → F uniformly.

(b) Fn and F are Hölder continuous with exponent 1/2.

(c) If fn converges weakly to f in the sense of Problem 8.1.10 and if
sup ‖fn‖2 < ∞, then Fn → F uniformly.

Remark: In fact, all weakly convergent sequences are bounded (for one
proof, see [Heil11, Thm. 2.38]), so the assumption in part (c) that sup ‖fn‖2

is finite is redundant.

8.2 Orthogonality

The existence of a notion of orthogonality gives inner product spaces a much
richer and more tractable structure than generic Banach spaces, and leads to
many elegant results that have natural, constructive proofs. We will derive
some of these in this chapter. First we define orthogonal vectors.

Definition 8.2.1. Let H be an inner product space, and let I be an arbitrary
index set.

(a) Two vectors x, y ∈ H are orthogonal, denoted x ⊥ y, if 〈x, y〉 = 0.

(b) A sequence of vectors {xi}i∈I is orthogonal if 〈xi, xj〉 = 0 whenever i 6= j.

(c) A sequence of vectors {xi}i∈I is orthonormal if it is orthogonal and each
vector xi is a unit vector. Using the Kronecker delta notation, {xi}i∈I is
an orthonormal set if for all i, j ∈ I we have

〈xi, xj〉 = δij =

{
1, if i = j,

0, if i 6= j.
♦

For example, the sequence of standard basis vectors E = {δn}n∈N is an
orthonormal sequence in ℓ2.

The zero vector may be an element of a sequence of orthogonal vectors.
Any orthogonal sequence {xi}i∈I of nonzero vectors can be rescaled to form
an orthonormal sequence, simply by dividing each vector by its length.

If {xn}n∈N is a countable sequence of linearly independent, but not neces-
sarily orthogonal, vectors then the Gram–Schmidt orthonormalization proce-
dure that we will describe in Section 8.3.5 can be used to construct an ortho-
normal sequence {en}n∈N such that span{x1, . . . , xk} = span{e1, . . . , ek} for
every k.

The following lemma will be useful to us later.

Lemma 8.2.2. Let x and y be vectors in an inner product space H. Then

x ⊥ y ⇐⇒ ‖x‖ ≤ ‖x + λy‖ for every scalar λ.
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Proof. ⇒. If 〈x, y〉 = 0 then, by the Pythagorean Theorem,

‖x + λy‖2 = ‖x‖2 + ‖λy‖2 ≥ ‖x‖2.

⇐. Assume that ‖x‖ ≤ ‖x + λy‖ for every λ. Replacing λ with −λ and
applying the Polar Identity, we see that

‖x‖2 ≤ ‖x − λy‖2 = ‖x‖2 − 2Re〈x, λy〉 + ‖λy‖2.

Rearranging gives
2Re

(
λ〈x, y〉

)
≤ |λ|2 ‖y‖2. (8.6)

In particular, let λ = t > 0 be a positive real number. Then equation (8.6) re-
duces to 2Re〈x, y〉 ≤ t ‖y‖2. Letting t approach zero through positive values,
we therefore obtain

2Re〈x, y〉 ≤ lim
t→0+

t ‖y‖2 = 0.

Thus Re〈x, y〉 ≤ 0. By considering λ = t < 0 we can similarly show that
Re〈x, y〉 ≥ 0, and therefore Re〈x, y〉 = 0. If H is a real inner product space,
then this shows that 〈x, y〉 = 0, and so we are done. On the other hand, if H
is a complex inner product space, then by considering λ = it with t > 0 and
then t < 0 we can show that Im〈x, y〉 = 0, and therefore 〈x, y〉 = 0. ⊓⊔

8.2.1 Orthogonal Complements

We have defined what it means for vectors to be orthogonal, but sometimes
we need to consider subsets or subspaces that are orthogonal. For example,
we often say that the z-axis in R3 is orthogonal to the x-y plane. What we
mean by this statement is that every vector on the z-axis is orthogonal to
every vector in the x-y plane. The following definition extends this idea to
subsets of an inner product space.

Definition 8.2.3 (Orthogonal Subsets). Let H be an inner product space,
and let A and B be subsets of H.

(a) We say that a vector x ∈ H is orthogonal to the set A, and write x ⊥ A,
if x ⊥ y for every y ∈ A.

(b) We say that A and B are orthogonal sets, and write A ⊥ B, if x ⊥ y for
every x ∈ A and y ∈ B. ♦

The largest possible set B that is orthogonal to a given set A is called the
orthogonal complement of A, defined precisely as follows.

Definition 8.2.4 (Orthogonal Complement). Let A be a subset of an
inner product space H. The orthogonal complement of A is
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A⊥ =
{
x ∈ H : x ⊥ A

}
=

{
x ∈ H : 〈x, y〉 = 0 for all y ∈ A

}
. ♦

For example, although the x-axis in R3 is orthogonal to the z-axis, it is
not the largest set that is orthogonal to the z-axis. The largest set that is
orthogonal to the z-axis is the x-y plane, and this plane is the orthogonal
complement of the z-axis in R3. To emphasize, the orthogonal complement
A⊥ contains all (not just some) of the vectors x in H that are orthogonal to
all elements of A.

To give another example, we declare that a function f ∈ L2(R) is even if
f(x) = f(−x) for a.e. x, and similarly f is odd if f(x) = −f(−x) for a.e. x.

Exercise 8.2.5. Let E be the set of all even functions in L2(R), and let O
be the set of all odd functions in L2(R). Prove that E and O are closed
subspaces of L2(R), and we have both E⊥ = O and O⊥ = E. ♦

Often the set A will be a subspace of H (as in the preceding example),
but it does not have to be.

Here are some properties of orthogonal complements.

Lemma 8.2.6. If A is a subset of an inner product space H, then the follow-
ing statements hold.

(a) A⊥ is a closed subspace of H.

(b) H⊥ = {0} and {0}⊥ = H.

(c) If A ⊆ B, then B⊥ ⊆ A⊥.

(d) A ⊆ (A⊥)⊥.

Proof. (a) Choose any vectors y, z ∈ A⊥ and scalars a and b. Then for every
x ∈ A we have

〈ay + bz, x〉 = a〈y, x〉 + b〈z, x〉 = 0,

so ay + bz ∈ A⊥. Therefore A⊥ is a subspace of H.
Now suppose that vectors yn ∈ A⊥ are such that yn → y in H. Then for

every x ∈ A we have by the continuity of the inner product that

〈x, y〉 = lim
n→∞

〈x, yn〉 = 0.

Therefore y ∈ A⊥, so A⊥ is closed.

(b) Every vector in H is orthogonal to every vector in {0}, so {0}⊥ = H.
Suppose x ∈ H⊥. Then x is orthogonal to every vector in H, including itself.
Therefore ‖x‖2 = 〈x, x〉 = 0, which implies that x = 0. Hence H⊥ = {0}.

(c) Assume that A ⊆ B ⊆ H, and suppose that x ∈ B⊥. Then x is
orthogonal to every vector in B, and therefore it is orthogonal to every vector
in A. Hence x ∈ A⊥, which shows that B⊥ ⊆ A⊥.

(d) Fix x ∈ A. Then x is orthogonal to every vector in A⊥ (by the definition
of A⊥), so x belongs to (A⊥)⊥. Thus A ⊆ (A⊥)⊥. ⊓⊔

In Lemma 8.2.14 we will prove that if M is a closed subspace of a Hilbert
space, then (M⊥)⊥ = M.
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8.2.2 Orthogonal Projections

Finding a point that is closest to a given set is a type of optimization problem
that arises in a wide variety of circumstances. Unfortunately, in a generic
Banach space it can be difficult to compute the exact distance from a point x
to a set S, or to determine if there is a vector in S that is closest to x. Even
if a closest point exists, it need not be unique. The following theorem states
that if S is a closed and convex subset of a Hilbert space H, then for each
vector x ∈ H there exists a unique vector y ∈ S that is closest to x.

Theorem 8.2.7 (Closest Point Theorem). Let H be a Hilbert space, and
let S be a nonempty closed, convex subset of H. If x ∈ H, then there exists
a unique vector y ∈ S that is closest to x. That is, there is a unique vector
y ∈ S that satisfies

‖x − y‖ = dist(x, S) = inf
{
‖x − z‖ : z ∈ S

}
.

Proof. Set d = dist(x, S). Then, by the definition of an infimum, there exist
vectors yn ∈ S such that ‖x − yn‖ → d as n → ∞. For each of these vectors
we have ‖x − yn‖ ≥ d. Therefore, if we fix an ε > 0 then we can find an
integer N > 0 such that

d2 ≤ ‖x − yn‖2 ≤ d2 + ε2, for all n ≥ N.

We will show that the sequence {yn}n∈N is Cauchy, and hence converges to
some point y, which we will then prove is the unique closest point to S.

To do this, choose any integers m, n ≥ N, and let w = (ym + yn)/2 be
the midpoint of the line segment joining ym to yn. Since S is convex we have
w ∈ S, and therefore ‖x − w‖ ≥ d. Using the Parallelogram Law, it follows
that

‖yn − ym‖2 + 4d2 ≤ ‖yn − ym‖2 + 4 ‖x − w‖2

= ‖(x − yn) − (x − ym)‖2 + ‖(x − yn) + (x − ym)‖2

= 2
(
‖x − yn‖2 + ‖x − ym‖2

)
(Parallelogram Law)

≤ 4 (d2 + ε2).

Rearranging, we see that ‖ym − yn‖ ≤ 2ε. This holds for all m, n ≥ N, so
{yn}n∈N is a Cauchy sequence in H. Since H is complete, this sequence must
converge, say to y. Since S is closed and yn ∈ S for every n, the vector y
belongs to S. Also, since x − yn → x − y, the continuity of the norm implies
that ‖x − yn‖ → ‖x − y‖. Hence

‖x − y‖ = lim
n→∞

‖x − yn‖ = d.

Therefore y is a point in S that is closest to x.
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It only remains to show that y is the unique point in S that is closest to x.
Suppose that z ∈ S is also a closest point, i.e., ‖x − y‖ = d = ‖x − z‖. Since
the midpoint w = (y + z)/2 belongs to S, we have ‖x−w‖ ≥ d. Applying the
Parallelogram Law again, we see that

4d2 = 2
(
‖x − y‖2 + ‖x − z‖2

)

= ‖(x − y) − (x − z)‖2 + ‖(x − y) + (x − z)‖2

= ‖y − z‖2 + 4 ‖x − w‖2

≥ ‖y − z‖2 + 4d2.

Rearranging yields ‖y − z‖ ≤ 0, which implies that y = z. ⊓⊔

In particular, every closed subspace M of H is nonempty, closed, and
convex, so we can apply the Closest Point Theorem to M. For this setting we
introduce a name for the point p in M that is closest to a given vector x. We
also use the same name to denote the function that maps x to the point p
in M that is closest to x.

Definition 8.2.8 (Orthogonal Projection). Let M be a closed subspace
of a Hilbert space H.

(a) If x ∈ H, then the unique vector p ∈ M that is closest to x is called the
orthogonal projection of x onto M.

(b) The function P : H → H defined by Px = p, where p is the orthog-
onal projection of x onto M, is called the orthogonal projection of H
onto M. ♦

Fig. 8.1 The orthogonal projection of a vector x onto a subspace M. The vector p is the

point in M that is closest to x, and e = x − p.

Since the orthogonal projection p is the vector in M that is closest to x,
we can think of p as being the best approximation to x by vectors from M.
The difference e = x − p is the error in this approximation (see Figure 8.1).

Example 8.2.9. For simplicity, we take scalars to be real in this example.
Let M = {(x1, x2, 0) : x1, x2 ∈ R} be the x1-x2 plane in R3, and choose
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any point x = (x1, x2, x3) in R3. We claim that p = (x1, x2, 0) ∈ M is
the orthogonal projection of x onto M. To prove this, choose an arbitrary
point w = (w1, w2, 0) in M. Then x − w = (x1 − w1, x2 − w2, x3) while
x − p = (0, 0, x3), so

‖x − w‖2
2 = |x1 − w1|2 + |x2 − w2|2 + |x3|2 ≥ |x3|2 = ‖x − p‖2

2.

Thus p is closer to x than w, so p is the orthogonal projection. ♦
If we let {e1, e2, e3} be the standard basis for R3, then Example 8.2.9 tells

us that the orthogonal projection of

x = (x1, x2, x3) = x1e1 + x2e2 + x3e3

onto M = span{e1, e2} is

p = (x1, x2, 0) = x1e1 + x2e2.

Next we derive an analogous formula for the orthogonal projection of a vector
onto any nontrivial finite-dimensional subspace (the trivial case is easy: the
orthogonal projection of any vector onto M = {0} is the zero vector).

Lemma 8.2.10. Let {e1, . . . , ed} be a finite set of orthonormal vectors in a
Hilbert space H, and let M = span{e1, . . . , ed}. Then the following statements
hold.

(a) If x ∈ M, then

x =

d∑

n=1

〈x, en〉 en

is the unique representation of x as a linear combination of e1, . . . , ed,
and we have

‖x‖2 =
d∑

n=1

|〈x, en〉|2. (8.7)

(b) M is a closed subspace of H.

(c) The orthogonal projection of an arbitrary vector x ∈ H onto M is

p =

d∑

n=1

〈x, en〉 en, (8.8)

and we have

‖p‖2 =

d∑

n=1

|〈x, en〉|2.

Proof. (a) By hypothesis, the vectors e1, . . . , ed span M. Therefore, if x ∈ M

then x =
∑d

n=1 cnen for some scalars cn. If 1 ≤ k ≤ n, then the fact that the
vectors e1, . . . , ed are orthonormal implies that
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〈x, ek〉 =

〈 d∑

n=1

cnen, ek

〉
=

d∑

n=1

cn 〈en, ek〉 = ck.

Finally, equation (8.7) follows by applying the Pythagorean Theorem.

(b) It is a fact that every finite-dimensional subspace of a normed space is
closed (see Section 1.2.4). Alternatively, part (a) can be used to give a direct
proof that M is closed; we assign the details as an exercise for the reader.

(c) Let e = x − p. If we fix any integer k between 1 and d, then

〈e, ek〉 = 〈x, ek〉 − 〈p, ek〉 = 〈x, ek〉 −
〈 d∑

n=1

〈x, en〉 en, ek

〉

= 〈x, ek〉 −
d∑

n=1

〈x, en〉 〈en, ek〉

= 〈x, ek〉 − 〈x, ek〉 = 0.

Hence e is orthogonal to each of e1, . . . , ed. Since every vector in M is a linear
combination of these vectors, it follows that e is orthogonal to every element
of M. In particular, if w ∈ M then w − p is also in M, so e ⊥ w − p and
therefore

‖x − w‖2 = ‖e − (w − p)‖2

= ‖e‖2 + ‖w − p‖2 (Pythagorean Theorem)

≥ ‖e‖2 = ‖x − p‖2.

Thus p is closer to x than w. Therefore p is the orthogonal projection of x
onto M (see the illustration in Figure 8.2). ⊓⊔

Fig. 8.2 The vector p in M is closer to x than the point w ∈ M. Each of p, w, and w − p

are orthogonal to e = x − p.

In Section 8.3 we will generalize Lemma 8.2.10 from finite-dimensional
subspaces to arbitrary closed subspaces M of H.
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8.2.3 Characterizations of the Orthogonal Projection

Now we give several equivalent reformulations of the orthogonal projection.
In particular, we see that the orthogonal projection of x onto M is the unique
vector p ∈ M such that the error vector e = x − p is orthogonal to M.

Theorem 8.2.11. Let M be a closed subspace of a Hilbert space H. If x and
p are vectors in H, then the following four statements are equivalent.

(a) p is the orthogonal projection of x onto M, i.e., p is the unique point in
M that is closest to x.

(b) p ∈ M and x − p ⊥ M.

(c) x = p + e, where p ∈ M and e ∈ M⊥.

(d) e = x − p is the orthogonal projection of x onto M⊥.

Proof. (a) ⇒ (b). Let p be the point in M that is closest to x, and let
e = x− p. Choose any vector y ∈ M. We must show that 〈y, e〉 = 0. Since M
is a subspace, p−λy ∈ M for every scalar λ. But p is closer to x than p−λy,
so

‖e‖ = ‖x − p‖ ≤ ‖x − (p − λy)‖ = ‖e + λy‖.
Lemma 8.2.2 therefore implies that y ⊥ e.

Exercise: Prove the remaining implications. ⊓⊔

8.2.4 The Closed Span

The span of a set A, denoted span(A), is the set of all finite linear combina-
tions of elements of A. In order to characterize the orthogonal complement
of the orthogonal complement of a set A, we will need to consider the closure
of the span of A. We call this the closed span of A, and we introduce the
following notation (which makes sense in any normed space).

Notation 8.2.12 (Closed Span). If A is a subset of a normed space X,
then we denote the closure of the span of A by

span(A) = span(A).

We call span(A) the closed span of A. If A = {xn}n∈N is a sequence, then we
often write span{xn}n∈N or just span{xn} for the closed span of the sequence
{xn}n∈N. ♦

By Exercise 1.1.7, the closed span of A consists of all limits of elements of
span(A):
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span(A) =
{
y ∈ X : ∃ yn ∈ span(A) such that yn → y

}
. (8.9)

Note that in equation (8.9) we take limits of finite linear combinations of
elements of A, not just limits of elements of A. The following exercise shows
that we can equivalently characterize the closed span as the smallest closed
subspace of X that contains A.

Exercise 8.2.13 (Smallest Closed Subspace). Suppose that A is a subset
of a normed space X. Prove that

(a) span(A) is a closed subspace of X, and

(b) if M is any closed subspace such that A ⊆ M, then span(A) ⊆ M.

Consequently, the closed span is the intersection of all of the closed subspaces
that contain A:

span(A) =
⋂{M : M is a closed subspace and M ⊇ A}. ♦

8.2.5 The Complement of the Complement

Now we prove that the orthogonal complement of the orthogonal complement
of a set A is the closed span of A. We begin with the case where our set is a
closed subspace.

Lemma 8.2.14. If H is a Hilbert space and M is a closed subspace of H,
then (M⊥)⊥ = M.

Proof. We saw in Lemma 8.2.6 that M ⊆ (M⊥)⊥. Conversely, suppose that
x ∈ (M⊥)⊥, and let p be the orthogonal projection of x onto M. Since M
is a closed subspace, we have x = p + e where p ∈ M and e ∈ M⊥. Since
x ∈ (M⊥)⊥ and p ∈ M ⊆ (M⊥)⊥, it follows that e = x − p ∈ (M⊥)⊥.
However, we also know that e ∈ M⊥, so e is orthogonal to itself and therefore
is zero. Hence x = p + 0 ∈ M. This shows that (M⊥)⊥ ⊆ M. ⊓⊔

The next exercise will allow us to generalize from closed subspaces M to
arbitrary subsets A in H.

Exercise 8.2.15. Let A be a subset of a Hilbert space H, and suppose that
x ⊥ A. Prove that x ⊥ span(A) and x ⊥ span(A), and use this to show that

A⊥ = span(A)⊥ = span(A)⊥. ♦

Corollary 8.2.16. If H is a Hilbert space and A ⊆ H, then

(A⊥)⊥ = span(A).

Proof. If we let M = span(A), then Exercise 8.2.15 implies that A⊥ = M⊥.
But M is closed subspace, so (M⊥)⊥ = M by Lemma 8.2.14. ⊓⊔
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8.2.6 Complete Sequences

We often seek sequences whose closed span is as large as possible. We intro-
duce the following terminology for such sequences. Note that the meaning of
a “complete sequence” as given in this definition is entirely distinct from the
meaning of a “complete space” as given in Definition 1.1.4.

Definition 8.2.17 (Complete Sequence). Let {xn}n∈N be a sequence of
vectors in a normed space X. We say that the sequence {xn}n∈N is complete
in X if span{xn}n∈N is dense in X, i.e., if

span{xn}n∈N = X.

Complete sequences are also known as total or fundamental sequences. ♦

Applying this terminology to the results of Section 8.2.5 gives us the fol-
lowing characterization.

Corollary 8.2.18. If {xn}n∈N is a sequence of vectors in a Hilbert space H,
then the following two statements are equivalent.

(a) {xn}n∈N is a complete sequence in H.

(b) The only vector in H that is orthogonal to every xn is the zero vector,
i.e., if x ∈ H and 〈x, xn〉 = 0 for every n, then x = 0. ♦

Problems

8.2.19. Prove that any set of nonzero orthogonal vectors in an inner product
space is finitely linearly independent.

8.2.20. Let M be a closed subspace of a Hilbert space H, and let P be
the orthogonal projection of H onto M. Show that I − P is the orthogonal
projection of H onto M⊥.

8.2.21. Assume that E ⊆ Rd is measurable with |E| > 0, and set

M =
{
g ∈ L2(Rd) : g(x) = 0 for a.e. x /∈ E

}
.

Prove that M is a closed subspace of L2(Rd), and the orthogonal projection of
f ∈ L2(Rd) onto M is p = f ·χE . What is the orthogonal complement of M?

8.2.22. (a) Let H be a finite-dimensional Hilbert space. Prove that a finite
set of vectors {x1, . . . , xm} is complete in H if and only if x1, . . . , xm span H.

(b) Prove that the sequence of standard basis vectors {δn}n∈N is complete
in ℓ2, but it does not span ℓ2.
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8.2.23. Let {xn}n∈N be a sequence in a Hilbert space H. Show that if y ⊥ xn

for every n, then y ∈
(
span{xn}n∈N

)⊥
.

8.2.24. Given a sequence {xn}n∈N in a Hilbert space H, prove that the fol-
lowing two statements are equivalent.

(a) For each m ∈ N we have xm /∈ span{xn}n6=m, i.e., xm does not lie in
the closed span of the other vectors (such a sequence is said to be minimal).

(b) There exists a sequence {yn}n∈N in H such that 〈xm, yn〉 = δmn for
all m, n ∈ N (we say that sequences {xn}n∈N and {yn}n∈N satisfying this
condition are biorthogonal).

Show further that if statements (a) and (b) hold, then the sequence
{yn}n∈N is unique if and only if {xn}n∈N is complete.

8.2.25. Prove that sin 2πx and cos 2πx are orthogonal functions in L2[0, 1],
and there is no function f ∈ L2[0, 1] that satisfies

∫ 1

0

∣∣f(x) − sin 2πx
∣∣2 dx <

4

9
and

∫ 1

0

∣∣f(x) − cos 2πx
∣∣2 dx <

1

9
.

8.2.26. Let M be a closed subspace of a Hilbert space H. Given x ∈ H, prove
that

dist(x,M) = sup
{
|〈x, y〉| : y ∈ M⊥, ‖y‖ = 1

}
,

and the supremum is achieved.

8.3 Orthonormal Sequences and Orthonormal Bases

In this section we will take a closer look at orthonormal sequences, focusing
especially on countably infinite orthonormal sequences {en}n∈N. The reader
should check (this is Problem 8.3.18) that similar results hold for finite ortho-
normal sequences {e1, . . . , ed}; in fact the statements and proofs are easier in
that case because there are no issues with convergence of infinite series.

8.3.1 Orthonormal Sequences

Suppose that {en}n∈N is an arbitrary sequence in a Banach space X. In
general, if we are given some scalars cn then it can be extremely difficult
to determine whether the infinite series

∑
cnen converges in X. However,

the next theorem shows that if {en}n∈N is an orthonormal sequence in a
Hilbert space H, then we can completely characterize the scalars for which
this happens. Recall that an infinite series converges if there is a vector x
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such that the partial sums sN =
∑N

n=1 cnen converge to x in the norm of H
as N → ∞.

Theorem 8.3.1. If E = {en}n∈N is an orthonormal sequence in a Hilbert
space H, then the following statements hold.

(a) Bessel’s Inequality:

∞∑

n=1

|〈x, en〉|2 ≤ ‖x‖2 for each x ∈ H.

(b) If the series x =
∞∑

n=1

cnen converges, then cn = 〈x, en〉 for each n ∈ N.

(c)

∞∑

n=1

cnen converges ⇐⇒
∞∑

n=1

|cn|2 < ∞.

Proof. (a) Choose x ∈ H. If we fix N ∈ N, then Lemma 8.2.10 tells us that

pN =

N∑

n=1

〈x, en〉 en

is the orthogonal projection of x onto span{e1, . . . , eN}. Consequently the
“error vector” qN = x − pN is orthogonal to pN . Hence

‖x‖2 = ‖pN + qN‖2 = ‖pN‖2 + ‖qN‖2 (Pythagorean Theorem)

≥ ‖pN‖2 (since ‖qN‖2 ≥ 0)

=

N∑

n=1

|〈x, en〉|2 (Pythagorean Theorem).

Letting N → ∞, we obtain Bessel’s Inequality.

(b) Suppose that the series x =
∑

cnen converges, and fix m ∈ N. Then,
by applying equation (8.2), we compute that

〈x, em〉 =

〈 ∞∑

n=1

cnen, em

〉
=

∞∑

n=1

cn 〈en, em〉 =

∞∑

n=1

cnδmn = cm.

(c) If x =
∑

cnen converges, then cn = 〈x, en〉 by part (b), and therefore∑
|cn|2 < ∞ by Bessel’s Inequality. Conversely, suppose that

∑
|cn|2 < ∞

and set

sN =

N∑

n=1

cnen and tN =

N∑

n=1

|cn|2.

If N > M then, by the Pythagorean Theorem,

‖sN − sM‖2 =

∥∥∥∥
N∑

n=M+1

cnen

∥∥∥∥
2

=
N∑

n=M+1

‖cnen‖2 = |tN − tM |.
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Since {tN}N∈N is a Cauchy sequence of scalars, it follows that {sN}N∈N is a
Cauchy sequence in H. But H is complete (since it is a Hilbert space), so the
sequence {sN}N∈N must converge. Therefore, by the definition of an infinite
series,

∑
cnen converges. ⊓⊔

8.3.2 Unconditional Convergence

We have seen that if {en}n∈N is an orthonormal sequence, then the infinite
series

∑
cnxn converges if and only if (cn)n∈N ∈ ℓ2. We will show that the

convergence is actually unconditional in the following sense.

Definition 8.3.2 (Unconditional Convergence). Let {xn}n∈N be a se-
quence of vectors in a normed space X. If

∑∞
n=1 xσ(n) converges for every

bijection σ : N → N, then we say that the infinite series
∑∞

n=1 xn converges
unconditionally. A series that converges but does not converge uncondition-
ally is said to be conditionally convergent. ♦

That is, a series
∑

xn converges unconditionally if it converges no matter
what ordering we impose on the index set. The following theorem states that
unconditional and absolute convergence are equivalent for series of scalars
(for one proof, see [Heil11, Lemma 3.3]).

Theorem 8.3.3. If (cn)n∈N is a sequence of scalars, then
∑

cn converges
absolutely if and only if it converges unconditionally. That is,

∞∑

n=1

|cn| < ∞ ⇐⇒
∞∑

n=1

cσ(n) converges for each bijection σ : N → N. ♦

For example, the alternating harmonic series
∑∞

n=1(−1)n/n does not con-
verge absolutely, and therefore there must be some reordering σ : N → N such
that

∑∞
n=1(−1)σ(n)/σ(n) diverges (exhibit such a permutation σ).

The equivalence given in Theorem 8.3.3 extends to infinite series in finite-
dimensional normed spaces (see [Heil11, Sec. 3.6] for details). In any Banach
space it is always true that absolute convergence implies unconditional con-
vergence (this is Problem 8.3.23). However, as we will explain below, in an
infinite-dimensional Hilbert space, unconditional convergence does not imply
absolute convergence. On the other hand, for an orthonormal sequence we
have the following connection between convergence and unconditional con-
vergence.

Corollary 8.3.4. If E = {en}n∈N is an orthonormal sequence in a Hilbert
space H, then

∞∑

n=1

cnen converges ⇐⇒
∞∑

n=1

cnen converges unconditionally.
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Proof. If σ : N → N is a bijection, then

∞∑

n=1

cnen converges ⇐⇒
∞∑

n=1

|cn|2 < ∞ (Theorem 8.3.1)

⇐⇒
∞∑

n=1

|cσ(n)|2 < ∞ (Theorem 8.3.3)

⇐⇒
∞∑

n=1

cσ(n) eσ(n) converges (Theorem 8.3.1).

Thus, if
∑

cnen converges then so does any reordering of the series. ⊓⊔

We use this corollary to exhibit an infinite series that converges uncondi-
tionally but not absolutely.

Example 8.3.5. Let H be any infinite-dimensional Hilbert space, and let
{en}n∈N be an infinite orthonormal sequence in H. Since ( 1

n )n∈N ∈ ℓ2, Theo-
rem 8.3.1 and Corollary 8.3.4 imply that the series

∑
1
nen converges uncon-

ditionally. However,

∞∑

n=1

∥∥∥ 1

n
en

∥∥∥ =

∞∑

n=1

1

n
= ∞,

so
∑

1
nen does not converge absolutely. ♦

The Dvoretzky–Rogers Theorem is a nontrivial result that implies that
every infinite-dimensional normed space contains an infinite series that con-
verges unconditionally but not absolutely (see [Heil11, Sec. 3.6] for discussion
and details).

8.3.3 Orthogonal Projections Revisited

If {en}n∈N is a sequence of orthonormal vectors in a Hilbert space, then its
closed span is a closed subspace of H. The next theorem gives an explicit
formula for the orthogonal projection of a vector onto a closed span.

Theorem 8.3.6. Let H be a Hilbert space, let E = {en}n∈N be an ortho-
normal sequence in H, and let M = span(E) be the closed span of E . If
x ∈ H, then the following statements hold.

(a) The orthogonal projection of x onto M is

p =

∞∑

n=1

〈x, en〉 en.
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(b) The norm of p satisfies

‖p‖2 =

∞∑

n=1

|〈x, en〉|2.

(c) We have

x ∈ M ⇐⇒ x =

∞∑

n=1

〈x, en〉 en ⇐⇒ ‖x‖2 =

∞∑

n=1

|〈x, en〉|2.

Proof. (a) By Bessel’s Inequality,
∑ |〈x, en〉|2 ≤ ‖x‖2 < ∞. Part (b) of

Theorem 8.3.1 therefore implies that the infinite series that defines p does
converge. We must show that this vector p is the orthogonal projection of x
onto M.

If we fix k ∈ N then, since the en are orthonormal,

〈x − p, ek〉 = 〈x, ek〉 −
∞∑

n=1

〈x, en〉 〈en, ek〉 = 〈x, ek〉 − 〈x, ek〉 = 0.

Thus x−p is orthogonal to every ek. By linearity and by the continuity of the
inner product, it follows that x − p is orthogonal to every vector in M (see
Exercise 8.2.15). Therefore we have both p ∈ M and x− p ⊥ M, so Theorem
8.2.11 implies that p is the orthogonal projection of x onto M.

(b) Using the continuity of the inner product in the form of Exercise
8.1.5(b), we compute that

‖p‖2 = 〈p, p〉 =
∞∑

m=1

∞∑

n=1

〈x, em〉 〈x, en〉 〈em, en〉 =
∞∑

n=1

|〈x, en〉|2.

(c) Let i, ii, iii denote the three statements that appear in statement (c).
We must prove that i, ii, and iii are equivalent.

i ⇒ ii. If x ∈ M, then the orthogonal projection of x onto M is x itself, so
x = p =

∑
〈x, en〉 en.

ii ⇒ iii. If x = p then ‖x‖2 = ‖p‖2 =
∑ |〈x, en〉|2.

iii ⇒ i. Suppose ‖x‖2 =
∑

|〈x, en〉|2. Then, since x − p ⊥ p,

‖x‖2 = ‖(x − p) + p‖2

= ‖x − p‖2 + ‖p‖2 (Pythagorean Theorem)

= ‖x − p‖2 +

∞∑

n=1

|〈x, en〉|2

= ‖x − p‖2 + ‖x‖2.
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Hence ‖x − p‖ = 0, so x = p ∈ M. ⊓⊔

8.3.4 Orthonormal Bases

According to Definition 8.2.17, if {xn}n∈N is a countable sequence in a normed
space X then we say that {xn}n∈N is complete, total, or fundamental if its
closed span is all of X. Completeness by itself is typically a rather weak prop-
erty, but Theorem 8.3.6 tells us that if H is a Hilbert space and {en}n∈N is a
sequence in H that is both orthonormal and complete, then every vector
x ∈ H can be written as x =

∑
〈x, en〉 en. The following theorem gives us a

converse to this fact, assuming that {en}n∈N is an orthonormal sequence, and
additionally gives several other useful characterizations of complete ortho-
normal sequences.

Theorem 8.3.7. If H is a Hilbert space and {en}n∈N is an orthonormal
sequence in H, then the following five statements are equivalent.

(a) {en}n∈N is complete, i.e., span{en}n∈N = H.

(b) For each x ∈ H there exists a unique sequence of scalars (cn)n∈N such
that x =

∑
cnen.

(c) Every x ∈ H satisfies

x =

∞∑

n=1

〈x, en〉 en, (8.10)

where this series converges in the norm of H.

(d) Plancherel’s Equality holds:

‖x‖2 =

∞∑

n=1

|〈x, en〉|2 for all x ∈ H.

(e) Parseval’s Equality holds:

〈x, y〉 =
∞∑

n=1

〈x, en〉 〈en, y〉 for all x, y ∈ H.

Proof. For simplicity of notation, let E = {en}n∈N and set M = span(E).

(a) ⇒ (c), (d). If E is complete, then M = H by definition. Hence if x ∈ H
then x ∈ M, and therefore x =

∑
〈x, en〉 en and ‖x‖2 =

∑
|〈x, en〉|2 by

Theorem 8.3.6.

(b) ⇒ (c). If statement (b) holds, then cn = 〈x, xn〉 by Theorem 8.3.1(b).

(c) ⇒ (b). The uniqueness follows from the orthonormality of the en.
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(c) ⇒ (e). If statement (c) holds and x, y ∈ H, then

〈x, y〉 =

〈 ∞∑

n=1

〈x, en〉 en, y

〉
=

∞∑

n=1

〈
〈x, en〉 en, y

〉
=

∞∑

n=1

〈x, en〉 〈en, y〉,

where we used Exercise 8.1.5 to move the infinite series out of the inner
product.

(e) ⇒ (d). This follows by taking x = y.

(d) ⇒ (a). If statement (d) holds, then Theorem 8.3.6 implies that every
x ∈ H belongs to M. Hence M = H, so E is complete. ⊓⊔

Since the Plancherel and Parseval Equalities are equivalent, those two
names are often used interchangeably.

We refer to a sequence that satisfies the equivalent conditions in Theorem
8.3.7 as an orthonormal basis.

Definition 8.3.8 (Orthonormal Basis). Let H be a Hilbert space. A
countably infinite orthonormal sequence {en}n∈N that is complete in H is
called an orthonormal basis for H. ♦

In particular, if {en}n∈N is an orthonormal basis for H then every x ∈ H
can be written uniquely as x =

∑
〈x, en〉 en (so {en}n∈N is a Schauder basis

for H in the sense of Problem 7.4.11). Further, by Corollary 8.3.4, this series
converges unconditionally in H.

Example 8.3.9. The sequence of standard basis vectors {δk}k∈N is both com-
plete and orthonormal in ℓ2, so it is an orthonormal basis for ℓ2. If x =
(xk)k∈N is a vector in ℓ2 then 〈x, δk〉 = xk for every k, so the representation
of x with respect to the standard basis is simply

x =

∞∑

k=1

〈x, δk〉 δk =

∞∑

k=1

xk δk. ♦

If {e1, . . . , ed} is a complete orthonormal sequence in a finite-dimensional
Hilbert space H, then a modification of Theorem 8.3.7 (see Problem 8.3.18)
shows that {e1, . . . , ed} is a basis for H in the usual vector space sense (i.e.,
it is a Hamel basis), and for each x ∈ H we have

x =

d∑

k=1

〈x, en〉 en.

Since {e1, . . . , ed} is both orthonormal and a basis, we extend Definition
8.3.8 to cover this case as well, and refer to a complete orthonormal sequence
{e1, . . . , ed} as an orthonormal basis for H.
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8.3.5 Existence of an Orthonormal Basis

A normed space is separable if it contains a countable dense subset (see
Definition 7.4.1). All finite-dimensional normed spaces are separable, and
Lp(E) and ℓp are separable when p is finite. Hence L2(E) and ℓ2 are infinite-
dimensional separable Hilbert spaces. Not every Hilbert space is separable;
one example is given in Problem 8.3.31.

We will show that every separable Hilbert space contains an orthonormal
basis. We begin with finite-dimensional spaces, where we can use the same
Gram–Schmidt orthonormalization procedure that is employed to construct
orthonormal sequences in Rd or Cd.

Theorem 8.3.10. If H is a finite-dimensional Hilbert space then H contains
an orthonormal basis {e1, . . . , ed}, where d = dim(H) is the dimension of the
vector space H.

Proof. Since H is a d-dimensional vector space, it has a Hamel basis, i.e.,
there is a set B = {x1, . . . , xd} that is both linearly independent and spans H.
We will define a recursive procedure that constructs orthogonal vectors
y1, . . . , yd that span H.

First, set y1 = x1, and note that x1 6= 0 since x1, . . . , xd are linearly
independent. Define

M1 = span{x1} = span{y1}.

If d = 1 then M1 = H and we stop here. Otherwise M1 is a proper subspace
of H, and x2 /∈ M1 (because {x1, . . . , xd} is linearly independent). Let p2 be
the orthogonal projection of x2 onto M1. Then y2 = x2 − p2 is orthogonal to
x1, and y2 6= 0 since x2 /∈ M1. Therefore, we can define

M2 = span{x1, x2} = span{y1, y2},

where the second equality follows from the fact that y1, y2 are linear combina-
tions of x1, x2, and vice versa. Continuing in this way, we obtain orthogonal
vectors y1, . . . , yd that span H. Hence {y1, . . . , yd} is an orthogonal, but not
necessarily orthonormal, basis for H. Setting ek = yk/‖yk‖ therefore gives us
an orthonormal basis {e1, . . . , ed} for H. ⊓⊔

Next we consider infinite-dimensional, but still separable, Hilbert spaces.

Theorem 8.3.11. If H is a infinite-dimensional separable Hilbert space, then
H contains an orthonormal basis of the form {en}n∈N.

Proof. Since H is separable, it contains a countable dense subset {zn}n∈N.
The span of {zn}n∈N is dense in H, but {zn}n∈N need not be linearly indepen-
dent. However, we can extract a subsequence that is independent and has the
same span. Simply let x1 be the first zn that is nonzero. Then let x2 be the
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first zn after x1 that is not a multiple of x1. Then let x3 be the first zn after
x2 that does not belong to span{x1, x2}, and so forth. In this way we obtain
an independent sequence {xn}n∈N such that span{xn}n∈N = span{zn}n∈N.
This span is dense in H by hypothesis.

Now we apply the Gram–Schmidt procedure utilized in the proof of The-
orem 8.3.10 to the vectors x1, x2, . . . , but without stopping. This gives us
orthonormal vectors e1, e2, . . . such that for every n we have

span{e1, . . . , en} = span{x1, . . . , xn}.

Consequently, span{en}n∈N equals span{xn}n∈N, which equals span{zn}n∈N,
which is dense in H. Therefore {en}n∈N is a complete orthonormal sequence,
so it is, by definition, an orthonormal basis for H. ⊓⊔

Theorems 8.3.10 and 8.3.11 show that every separable Hilbert space con-
tains an orthonormal basis. This basis is finite if H is finite-dimensional,
and countably infinite if H is infinite-dimensional. Conversely, Problem 7.4.6
implies that any Hilbert space that contains a countable orthonormal basis
must be separable.

We will see several specific examples of orthonormal bases below.

8.3.6 The Legendre Polynomials

Let [a, b] be a finite closed interval with a < b. The Weierstrass Ap-
proximation Theorem (Theorem 1.3.4) tells us that the set of monomials
M = {xk}k≥0 is a complete sequence in C[a, b] with respect to the uniform
norm (implicitly, k denotes a nonnegative integer here). Because [a, b] has
finite measure, it follows directly from this that the monomials are complete
in L2[a, b] with respect to the L2-norm (see Problem 8.3.27). However, they
are not an orthogonal sequence, because

〈xj , xk〉 =

∫ b

a

xj xk dx =
bj+k+1 − aj+k+1

j + k + 1
,

which cannot be simultaneously zero for all j 6= k.
Although the monomials {xk}k≥0 are not orthogonal, they are linearly

independent, so we can apply the Gram–Schmidt procedure to obtain an or-
thogonal or orthonormal basis for L2[a, b]. In particular, the Legendre polyno-
mials are the orthogonal basis {Pk}k≥0 obtained by applying Gram–Schmidt
to the monomials xk on the interval [−1, 1]. Since Pk is defined to be a linear
combination of 1, x, . . . , xk, it is a polynomial, and in fact it is a polynomial
of degree k. Traditionally, these polynomials are not normalized so that their
L2-norm is 1, but rather are scaled so that ‖Pk‖2

2 = 2
2k+1 . Hence {Pk}k≥0 is

an orthogonal, but not orthonormal, basis for L2[−1, 1]. Using this normal-
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ization, the first few Legendre polynomials are

P0(x) = 1, P1(x) = x, P2(x) = 1
2 (3x2 − 1), P3(x) = 1

2 (5x3 − 3x).

By making a change of variables we can easily obtain a similar orthogonal
basis of polynomials for L2[a, b].

The Legendre polynomials arise naturally in a variety of applications. For
example, they are solutions to Legendre’s differential equation

d

dx

(
(1 − x2)

d

dx
Pn(x)

)
+ n(n + 1)Pn(x) = 0.

There are many other types of orthogonal polynomials, and they have nu-
merous applications in approximation theory and other areas. We refer to
texts such as [Ask75] or [Sze75] for more details on orthogonal polynomials
and related systems.

8.3.7 The Haar System

While the Gram–Schmidt procedure is appropriate for constructing some
orthonormal bases, it may not suffice when we seek an orthonormal basis
whose elements possess some special structure or have some particular prop-
erties. For example, in this section we will construct an orthonormal basis for
L2(R) whose elements are obtained by translating and dilating two simple
starting functions.

Let χ = χ
[0,1) be the box function. The function

ψ = χ
[0,1/2) − χ

[1/2,1)

is called the Haar wavelet or the square wave. Given integers n, k ∈ Z, we
create a function ψn,k by dilating and translating ψ as follows:

ψn,k(x) = 2n/2ψ(2nx − k) = 2n/2ψ
(
2n(x − 2−nk)

)
, x ∈ R.

By direct calculation, ψn,k ⊥ ψn′,k′ whenever (n, k) 6= (n′, k′); see the “proof
by picture” in Figure 8.3. Furthermore, ψn,k ⊥ χ(x− j) for all integers n ≥ 0
and k, j ∈ Z. The Haar system for L2(R) is the orthonormal collection

{
χ(x − k)

}
k∈Z

∪
{
ψn,k

}
n≥0, k∈Z

.

We will use the Lebesgue Differentiation Theorem to prove that the Haar
system is an orthonormal basis for L2(R).

Theorem 8.3.12. The Haar system is an orthonormal basis for L2(R).
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Fig. 8.3 Graphs of ψ−2,0 (dashed) and ψ2,3 (solid). The product of these two functions
is ψ−2,0 · ψ2,3 = 1

2
ψ2,3, and therefore

˙

ψ−2,0, ψ2,3

¸

= 1
2

R

ψ2,3 = 0.

Proof. We have already observed that the Haar system is an orthonormal
sequence. Therefore, we need only prove that it is complete. Suppose that
f ∈ L2(R) is orthogonal to every vector in the Haar system. Since the box
function χ = χ

[0,1] and all of its integer translates are elements of the Haar
system, this implies that

∫ k+1

k

f(t) dt = 0, for all k ∈ Z.

In particular, since f ⊥ χ we have

∫ 1/2

0

f(t) dt +

∫ 1

1/2

f(t) dt =

∫ 1

0

f(t) dt = 〈f, χ〉 = 0.

Since f is also orthogonal to the Haar wavelet ψ = χ
[0,1/2)−χ

[1/2,1), we have

∫ 1/2

0

f(t) dt −
∫ 1

1/2

f(t) dt = 〈f, ψ〉 = 0.

Adding and subtracting, we see that

∫ 1/2

0

f(t) dt = 0 =

∫ 1

1/2

f(t) dt.

Continuing in this way using the other elements of the Haar system, we can
show that

∫

In,k

f(t) dt = 0 for every dyadic interval In,k =
[ k

2n
,
k + 1

2n

]
.
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Let x ∈ R be any Lebesgue point of f. For each n ∈ N, let Jn(x) = In,kn(x)

be a dyadic interval that contains x. Because of our work above, we have∫
Jn(x)

f = 0. The collection of intervals {Jn(x)}n∈N shrinks regularly to x in

the sense of Definition 5.5.9, so Theorem 5.5.10 implies that

f(x) = lim
n→∞

1

|Jn(x)|

∫

Jn(x)

f(t) dt = 0.

Since almost every x is a Lebesgue point, it follows that f = 0 a.e. Applying
Corollary 8.2.18, we conclude that the Haar system is complete in L2(R). ⊓⊔

If we restrict the Haar system to elements that are supported within the
interval [0, 1], then we obtain the collection

{
χ
}

∪
{
ψn,k

}
n≥0, k=0,...,2n−1

.

This family is an orthonormal basis for L2[0, 1]; in fact it is the system that
was originally introduced by Haar in 1910 [Haar10]. An English translation
of Haar’s paper can be found in [HW06].

The Haar system is the simplest example of a wavelet orthonormal basis for
L2(R). Wavelets play important roles in harmonic analysis, signal processing,
image processing, and other applications. For more details on the construction
and application of wavelet bases, we refer to texts such as [Dau92], [KV95],
[HW96], [SN96], [Wal02], [Heil11].

8.3.8 Unitary Operators

Now we introduce some terminology and prove some results regarding oper-
ators. This material will be applied in Section 9.4, but is not otherwise used
in the remainder of the text.

We begin with isometries, which are functions that preserve the norms
of vectors. We will mostly be interested in operators on Hilbert spaces that
additionally are linear, but we state the definition for general functions on
normed spaces.

Definition 8.3.13 (Isometry). Let X and Y be normed spaces. A function
U : X → Y is an isometry if

‖U(x)‖ = ‖x‖, for all x ∈ X. ♦

Every linear isometry is injective, because if U(x) = U(y) then U(x−y) =
U(x) − U(y) = 0 and therefore ‖x − y‖ = ‖U(x − y)‖ = 0.

The following example shows that a linear isometry need not be surjective.
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Example 8.3.14. The right-shift operator is the function R : ℓ2 → ℓ2 defined
by

R(x) = (0, x1, x2, x3, . . . ), for x = (x1, x2, . . . ) ∈ ℓ2.

Since ‖R(x)‖2 = ‖x‖2, this function is isometric. It is also linear, but it is
not surjective. For example, the first standard basis vector δ1 = (1, 0, 0, . . . )
does not belong to the range of R.

There is also a left-shift operator L : ℓ2 → ℓ2, defined by

L(x) = (x2, x3, . . . ), for x = (x1, x2, . . . ) ∈ ℓ2.

This function is linear and surjective, but it is not injective and it is not
isometric since L(δ1) = 0. ♦

By making use of the Polar Identity, we will prove that a linear isometry
on Hilbert spaces preserves inner products as well as norms.

Lemma 8.3.15. Let H and K be Hilbert spaces. If U : H → K is a linear
isometry, then

〈
U(x), U(y)

〉
= 〈x, y〉 for all x, y ∈ H.

Proof. If x and y are any two vectors in H, then

‖x‖2 + 2Re〈x, y〉 + ‖y‖2

= ‖x + y‖2 (Polar Identity)

= ‖U(x) + U(y)‖2 (isometry + linear)

= ‖U(x)‖2 + 2Re
〈
U(x), U(y)

〉
+ ‖U(y)‖2 (Polar Identity)

= ‖x‖2 + 2Re
〈
U(x), U(y)

〉
+ ‖y‖2 (isometry).

Thus Re
〈
U(x), U(y)

〉
= Re〈x, y〉. If we are using real scalars, then we are

done. If we are using complex scalars, then a similar calculation based on
expanding ‖x + iy‖2 shows that Im

〈
U(x), U(y)

〉
= Im〈x, y〉. ⊓⊔

Since a linear isometry is automatically injective, it is a bijection if and
only if it is surjective. We have a special name for such operators on Hilbert
spaces.

Definition 8.3.16 (Unitary Operators). Let H and K be Hilbert spaces.

(a) A function U : H → K that is linear, isometric, and surjective is called a
unitary operator.

(b) We say that H and K are unitarily equivalent if there exists a unitary
operator U : H → K. ♦

Thus, a unitary operator is a linear bijection that preserves both lengths
of vectors and angles between vectors (because it preserves both norms and
inner products). For example, rotations and flips on the Euclidean space
Rd are unitary operators. Here is an example of a unitary operator on an
infinite-dimensional Hilbert space.
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Theorem 8.3.17. Every separable infinite-dimensional Hilbert space H is
unitarily equivalent to ℓ2. In particular, if {en}n∈N is an orthonormal basis
for H then the function U : H → ℓ2 defined by U(x) =

(
〈x, en〉

)
n∈N

for x ∈ H
is a unitary operator.

Proof. Theorem 8.3.11 tells us that a separable infinite-dimensional Hilbert
space H has an orthonormal basis of the form {en}n∈N. If x ∈ H, then we have∑ |〈x, en〉|2 < ∞ by Bessel’s Inequality, so the sequence U(x) = (〈x, en〉)n∈N

belongs to ℓ2. Indeed, the Plancherel Equality implies that

‖U(x)‖2
2 =

∞∑

n=1

|〈x, en〉|2 = ‖x‖2.

Hence U is isometric, and it is clearly linear. Finally, if c = (cn)n∈N is any
sequence in ℓ2 then the series x =

∑
cnen converges by Theorem 8.3.1, and

U(x) = c. Therefore U is surjective, so it is unitary. ⊓⊔

Problems

8.3.18. Let {e1, . . . , ed} be a finite set of orthonormal vectors in a Hilbert
space H. Formulate and prove analogues of Theorem 8.3.1, 8.3.6, and 8.3.7
for {e1, . . . , ed}.

8.3.19. Let H be an infinite-dimensional Hilbert space. Prove that H con-
tains an infinite orthonormal sequence {en}n∈N.

8.3.20. Suppose that {en}n∈N is an infinite orthonormal sequence in a Hilbert
space H. Prove that {en}n∈N contains no convergent subsequences, yet en

converges weakly to 0, i.e., 〈en, x〉 → 0 for every x ∈ H.

8.3.21. Suppose that {e1, . . . , ed} is an orthonormal basis for a finite-dimen-
sional subspace M of a separable, infinite-dimensional Hilbert space H. Prove
that there exist orthonormal vectors ed+1, ed+2, . . . such that {en}n∈N is an
orthonormal basis for H.

8.3.22. Suppose that H is an infinite-dimensional Hilbert space. Prove that
the closed unit ball D = {x ∈ H : ‖x‖ ≤ 1} is a closed and bounded subset
of H that is not compact.

8.3.23. (a) Let X be a Banach space. Show that if an infinite series
∑

xn

converges absolutely in X, then it converges unconditionally.

(b) Prove that if H is an infinite-dimensional Hilbert space, then there
exists an infinite series

∑
xn in H that converges unconditionally but not

absolutely.
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8.3.24. Assume that E ⊆ Rd is measurable and 0 < |E| < ∞. Prove the
following statements.

(a) There exists an infinite orthogonal sequence in L2(E) of the form
{χEn

}n∈N, where each En ⊆ E is measurable and
∑ |En| = |E|.

(b) The rescaled sequence E =
{
|En|−1/2 χEn

}
n∈N

is orthonormal, but it

is not an orthonormal basis for L2(E).

8.3.25. Assume that {en}n∈N is an orthonormal basis for a Hilbert space H.

(a) Suppose that vectors yn ∈ H satisfy
∑ ‖en − yn‖2 < 1. Prove that

{yn}n∈N is a complete sequence in H.

(b) Show that part (a) can fail if we only have
∑ ‖en − yn‖2 = 1.

8.3.26. The Rademacher system is the sequence {Rn}∞n=0 in L2[0, 1] defined
by

Rn(x) = sign(sin 2nπx),

where sign(t) = 1 if t > 0, sign(0) = 0, and sign(t) = −1 if t < 0. Prove that
{Rn}∞n=0 is an orthonormal sequence in L2[0, 1], but R1R2 ⊥ Rn for every
n ≥ 0 and therefore {Rn}∞n=0 is not complete.

Remark: The Walsh system is an extension of the Rademacher system that
forms an orthonormal basis for L2[0, 1].

8.3.27. Given a finite closed interval [a, b], prove the following statements (in
this problem, k implicitly denotes an integer).

(a) {xk}k≥0 is a complete and linearly independent sequence in L2[a, b].

(b) {xk}k≥N is a complete and linearly independent sequence in L2[a, b]
for each integer N ∈ N.

(c) The set of Legendre polynomials {Pk}k≥0 is complete in L2[−1, 1], but
no proper subset is complete.

(d) {x2k}k≥0 is a complete and linearly independent sequence in L2[0, 1].

(e) {x2k}k≥N is a complete and linearly independent sequence in L2[0, 1]
for each integer N ∈ N.

8.3.28. (Vitali [Vit21]) Let {en}n∈N be an orthonormal sequence in L2[a, b].
Prove that {en}n∈N is complete in L2[a, b] if and only if

∞∑

n=1

∣∣∣∣
∫ x

a

en(t) dt

∣∣∣∣
2

= x − a, for all x ∈ [a, b].

8.3.29. (Dalzell [Dal45]) Let {fn}n∈N be an orthonormal sequence in L2[a, b].
Show that {fn}n∈N is complete in L2[a, b] if and only if

∞∑

n=1

∫ b

a

∣∣∣∣
∫ x

a

fn(t) dt

∣∣∣∣
2

=
(b − a)2

2
.
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8.3.30. (Boas and Pollard [BP48]) Suppose that {fn}n∈N is an orthonormal
basis for L2[a, b]. Show that there is a function m ∈ L∞[a, b] such that
{mfn}n≥2 is complete in L2[a, b].

8.3.31. Let ℓ2(R) consist of all sequences x = (xt)t∈R indexed by the real
line such that at most countably many components xt are nonzero and∑

t∈R |xt|2 < ∞. Prove that ℓ2(R) is a nonseparable Hilbert space with re-
spect to the inner product 〈x, y〉 =

∑
t∈R xt yt.

8.3.32. (a) Prove that if E and F are measurable subsets of Rd with |E|,
|F | > 0, then L2(E) and L2(F ) are unitarily equivalent.

(b) Prove that two finite-dimensional Hilbert spaces H and K are unitarily
equivalent if and only if they have the same dimension.

8.4 The Trigonometric System

In this section we will take F = C and consider the complex Hilbert space
L2[0, 1]. For each integer n ∈ Z, let en denote the complex exponential func-
tion with frequency n:

en(x) = e2πinx, for x ∈ R.

Each function en is square-integrable on [0, 1]. The sequence

{en}n∈Z = {e2πinx}n∈Z

is called the (complex) trigonometric system in L2[0, 1].
If m 6= n, then the inner product of em with en is

〈em, en〉 =

∫ 1

0

em(x) en(x) dx =

∫ 1

0

e2πi(m−n)x dx =
e2πi(m−n) − 1

2πi(m − n)
= 0.

Therefore {en}n∈Z is an infinite orthonormal sequence in L2[0, 1]. It is a
much more subtle fact that {en}n∈Z is complete in L2[0, 1] and therefore is

an orthonormal basis for L2[0, 1]. We state this as the following theorem.

Theorem 8.4.1. The trigonometric system {en}n∈Z is complete in L2[0, 1],
and therefore it is an orthonormal basis for L2[0, 1]. ♦

After we have further developed the machinery of convolution in Chap-
ter 9, we will prove that the trigonometric system is complete in Lp[0, 1] for
every finite p, not just for p = 2 (this is Theorem 9.3.13). Alternatively, an
exposition of a different proof based on the Stone–Weierstrass Theorem can
be found in [Heil18, Sec. 5.11]. So, for now we will simply take Theorem 8.4.1
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as given, and focus our attention on some implications of the fact that the
trigonometric system is an orthonormal basis for L2[0, 1].

If f ∈ L2[0, 1], then the inner product of f with en(x) = e2πinx is called
the nth Fourier coefficient of f. These scalars are traditionally denoted by
f̂(n). Explicitly writing out the inner products, the Fourier coefficients are

f̂(n) = 〈f, en〉 =

∫ 1

0

f(x) e−2πinx dx, for n ∈ Z. (8.11)

Applying Theorem 8.3.7, Corollary 8.3.4, and Theorem 8.3.17 to the trigono-
metric system, and using the notation of equation (8.11), therefore gives us
the following result.

Theorem 8.4.2 (Fourier Series for L2[0, 1]).

(a) If f ∈ L2[0, 1], then

f =
∑

n∈Z

f̂(n) en, (8.12)

where this series converges unconditionally in the norm of L2[0, 1].

(b) Plancherel’s Equality: If f ∈ L2[0, 1], then

‖f‖2
2 =

∑

n∈Z

|f̂(n)|2. (8.13)

(c) Parseval’s Equality: If f, g ∈ L2[0, 1], then

〈f, g〉 =
∑

n∈Z

f̂(n) ĝ(n). (8.14)

(d) The mapping

U(f) =
(
f̂(n)

)
n∈Z

that sends a function f ∈ L2[0, 1] to its sequence of Fourier coefficients
defines a unitary operator U : L2[0, 1] → ℓ2(Z). ♦

Equation (8.12) is called the Fourier series representation of f. We often
write the Fourier series representation in the form

f(x) =
∑

n∈Z

f̂(n) e2πinx, (8.15)

but it is important to note that we know only that this series converges in
L2-norm. In general, it need not converge pointwise, even if f is continuous!
Indeed, establishing the convergence of Fourier series in senses other than
L2-norm can be very difficult. Given any index 1 < p < ∞ and any function
f ∈ Lp[0, 1], it can be shown that the symmetric partial sums
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SNf(x) =

N∑

n=−N

f̂(n) e2πinx

converge to f in Lp-norm, but convergence can fail if p = 1 or p = ∞, even if
f is continuous (e.g., see [Kat04, Chap. II] or [Heil11, Chap. 14] for proofs).
The Carleson–Hunt Theorem states that the symmetric partial sums of the
Fourier series of f ∈ Lp[0, 1] converge pointwise almost everywhere to f when
1 < p < ∞ (see Theorem 9.3.18).
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Fig. 8.4 Graph of ϕ(x) = 2 cos(2π3x).

We expand on the meaning of equation (8.15). The graph of the complex
exponential function e2πinx is pictured in Figure 9.5. This function is a pure
tone, and the function f̂(n) e2πinx is a pure tone that has been scaled so that

its amplitude is f̂(n). In general, f̂(n) is a complex number, but if f̂(n) is

real then the real part of this function is f̂(n) cos(2πnx); see Figure 8.4. This
could represent the displacement of the center of an ideal string vibrating at
the frequency n with amplitude f̂(n). It could also represent the displacement
of the center of an ideal stereo speaker from its rest position at time x. If
you were listening to this ideal speaker, you would hear a “pure tone.” Of
course, real strings and speakers are quite complicated and do not vibrate as
pure tones—there are overtones and other issues. Still, the function e2πinx

represents a “pure tone,” and the idea of Fourier series is that we can use
these pure tones as elementary building blocks for the construction of other,
more complicated, signals.

Given two frequencies m and n and amplitudes f̂(m) and f̂(n), a function
ϕ of the form

ϕ(x) = f̂(m) e2πimx + f̂(n) e2πinx

is a superposition of two pure tones. An illustration of the real part of such
a superposition appears in Figure 8.5. The real part of a superposition of 75
pure tones with randomly chosen amplitudes is shown in Figure 8.6.

Equation (8.15) says that any function f ∈ L2[0, 1] can be represented

as a sum of pure tones f̂(n) e2πinx over all possible frequencies n ∈ Z. By
superimposing all the pure tones with the correct amplitudes, we create any
square-integrable function that we like. The pure tones are our simple “build-
ing blocks,” and by combining them we can create any sound, or signal, or
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Fig. 8.5 Graph of ϕ(x) = 2 cos(2π3x) + 1.3 cos(2π7x).

0.2 0.4 0.6 0.8 1.0

-5

5

Fig. 8.6 Graph of 75 superimposed pure tones: ϕ(x) =
P75

n=1
bf(n) cos(2πnx).

function. Of course, the “superposition” is an infinite sum and the conver-
gence is in the L2-norm sense, but still the point is that by combining our
very simple special functions e2πinx we create very complicated functions f.

We have focused on the domain [0, 1]. If we like, we can also view en(x) =
e2πinx as a 1-periodic function that is defined on the entire real line. If we take
this point of view, then the trigonometric system {en}n∈Z is an orthonormal
basis for the space L2(T) that consists of all 1-periodic functions f that satisfy

‖f‖2
2 =

∫ 1

0

|f(x)|2 dx < ∞.

That is, if we take the domain of en to be the entire real line, then we can
only represent 1-periodic functions using the trigonometric system. We have
an orthonormal basis for L2(T), but not for L2(R).

On the other hand, if we separately restrict each of the functions en to
each of the finite intervals [k, k + 1] with k ∈ Z, then we can piece together
trigonometric systems in the following way to create an orthonormal basis
for L2(R).

Exercise 8.4.3. Show that G =
{
e2πinx χ

[k,k+1]

}
k,n∈Z

is an orthonormal

basis for L2(R). ♦

The basis G is the simplest example of a Gabor frame for L2(R). Gabor
frames play an important role in time-frequency analysis, signal processing,
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and other applications. We refer to [Grö01], [Chr16], or [Heil11, Chap. 11]
for more details on Gabor frames and other types of frames and bases. The
Gabor frame given in Exercise 8.4.3 is not very pleasant because its elements
are discontinuous functions. Examples of Gabor frames whose elements are
continuous are given in Problem 8.4.11.

Problems

8.4.4. This problem provides a real-valued analogue of the trigonometric
system {e2πinx}n∈Z. For this problem we assume that scalars are real, so
L2[0, 1] is the set of all square-integrable extended real-valued functions on
[0, 1]. Prove that

{1} ∪ {
√

2 cos 2πnx}n∈N ∪ {
√

2 sin 2πnx}n∈N

forms an orthonormal basis for L2[0, 1].

8.4.5. Prove that if f ∈ L2[0, 1], then

lim
n→∞

∫ 1

0

f(x) cos 2πnx dx = 0 = lim
n→∞

∫ 1

0

f(x) sin 2πnx dx.

8.4.6. (a) Compute the Fourier coefficients of the Haar wavelet, and use this
to show that

π2

8
=

∞∑

n=1

1

(2n − 1)2
.

(b) Prove Euler’s Formula:
π2

6
=

∞∑

n=1

1

n2
.

8.4.7. Let f(x) = x for x ∈ [0, 1]. Compute the Fourier coefficients of f, and
use this to give another proof of Euler’s Formula.

8.4.8. Use the Vitali Criterion (Problem 8.3.28) to prove that the following
three statements are equivalent.

(a) The trigonometric system {e2πinx}n∈Z is complete in L2[0, 1].

(b)
∞∑

n=1

1 − cos 2πnx

π2n2
= x − x2 for every x ∈ [0, 1].

(c)

∞∑

n=1

cos 2πnx

π2n2
= x2 − x +

1

6
for every x ∈ [0, 1].

8.4.9. Prove that if f ∈ L2[0, 1] and f̂ ∈ ℓ1(Z), then f is continuous.
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8.4.10. Let b > 0 be a fixed positive scalar. This problem will consider the
properties of the sequence Eb = {e2πibnx}n∈Z in the two spaces L2[0, b−1] and
L2[0, 1]. Prove the following statements.

(a) Eb is an orthogonal (but not orthonormal) basis for L2[0, b−1].

(b) If b > 1, then Eb is not complete in L2[0, 1]. Explicitly exhibit a nonzero

function in L2[0, 1] that is orthogonal to e2πibnx for every n ∈ Z.

(c) If 0 < b < 1, then the following statements hold.

• If f ∈ L2[0, 1], then

∑

n∈Z

|〈f, e2πibnx〉|2 =
1

b
‖f‖2

2. (8.16)

• If f ∈ L2[0, 1], then

f(x) = b
∑

n∈Z

〈f, e2πibnx〉 e2πibnx,

where this series converges unconditionally in the norm of L2[0, 1].

• {e2πibnx}n∈Z is not an orthogonal sequence in L2[0, 1].

• There are at least two distinct choices of coefficients (cn)n∈Z such that 1 =∑
n∈Z cne2πibnx, where these series converge in L2-norm. (Consequently,

Eb is not a Schauder basis for L2[0, 1] in the sense of Problem 7.4.11.)

Remark: Using terminology from frame theory, equation (8.16) says that
Eb is a tight frame for L2[0, 1]. The Classical (or Shannon) Sampling Theorem
is a consequence of this fact; see [Heil11, Thm. 10.7].

8.4.11. (a) Let a, b > 0 be fixed. Suppose that g ∈ L2(R) is such that

• g = 0 a.e. outside of the interval [0, 1
b ], and

• ∑
k∈Z |g(x − ak)|2 = 1 a.e.

Set gkn(x) = e2πibnxg(x− ak) for k, n ∈ Z, and prove that the Gabor system
G = {gkn}k,n∈Z satisfies

∑

k,n∈Z

|〈f, gkn〉|2 =
1

b
‖f‖2

2, for all f ∈ L2(R). (8.17)

Remark: Using the language of frame theory, equation (8.17) says that G
is a tight frame for L2(R); see [Grö01] or [Heil11].

(b) Exhibit a continuous function g and corresponding constants a, b > 0
such that the hypotheses of part (a) are satisfied. Prove that for this choice
of g, a, and b, the Gabor system G is not an orthogonal sequence.
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8.4.12. For each ξ ∈ R, define eξ(t) = e2πiξt for t ∈ R. Let H = span{eξ}ξ∈R

be the finite linear span of the family {eξ}ξ∈R. Show that

〈f, g〉 = lim
T→∞

1

2T

∫ T

−T

f(t) g(t) dt, f, g ∈ H,

defines an inner product on H, and {eξ}ξ∈R is an uncountable orthonormal
system in H.

Remark: H is not complete, but its completion H̃ is an important nonsep-
arable Hilbert space that contains the class of almost periodic functions, see
[Kat04].

8.4.13. For each n ∈ Z let en(x) = e2πinx. For n 6= 0, define

fn(x) = xen(x) and gn(x) =
en(x) − 1

x
.

Let F = {fn}n 6=0 and G = {gn}n6=0. For this problem, we order Z\{0} as

Z\{0} = {1, −1, 2, −2, 3, −3, . . . }.

This means that a series of the form h =
∑

n6=0 hn converges if and only if
the partial sums of

h1 + h−1 + h2 + h−2 + h3 + h−3 + · · ·

converge to h in L2-norm. Prove the following statements.

(a) fn and gn belong to L2[0, 1], and their norms satisfy ‖fn‖2 = 3−1/2

and limn→∞ ‖gn‖2 = ∞.

(b) F and G are biorthogonal, i.e.,

〈fm, gn〉 = δmn, all m 6= 0 and n 6= 0.

(c) F is minimal, i.e., for each m 6= 0 the function fm does not belong to
the closed span of the remaining functions fn:

fm 6∈ span
(
{fn}n6=m,n6=0

)
, for all m 6= 0

(see Problem 8.2.24). As a consequence, F is finitely linearly independent.

(d) F is complete, i.e., span(F) = L2[0, 1].

(e) If cn are scalars and the series f =
∑

n6=0 cnfn converges, then cn =
〈f, gn〉 for every n 6= 0, and cn → 0 as n → ±∞.

(f)* The constant function 1 belongs to span(F), but there do not exist
any scalars cn such that

1 =
∑

n6=0

cnfn.



Chapter 9

Convolution and the Fourier
Transform

In this chapter we will present several mathematical applications of the
Lebesgue integral and the Lp spaces. In Section 9.1 we study the convo-
lution of functions. Using this operation we will prove, for example, that the
space C∞

c (R) of infinitely differentiable, compactly supported functions is
dense in Lp(R) for all finite p. Then in Section 9.2 we introduce the Fourier
transform, which is the central operation of harmonic analysis for functions
on the real line. In Section 9.3 we study Fourier series, which is the analogue
of the Fourier transform for periodic functions. In particular, we prove that
the trigonometric system {e2πinx}n∈Z is an orthonormal basis for L2[0, 1].
Finally, in Section 9.4 we prove that the Fourier transform can be extended
from L1(R) to L2(R). In particular, the Fourier transform is a unitary map-
ping of L2(R) onto itself, and we explain why this is the correct analogy
for the Fourier transform of the fact that the trigonometric system is an
orthonormal basis for L2(T).

9.1 Convolution

We introduced the convolution of integrable functions on Rd in Section 4.6.3,
and now we will consider this operation in detail. Convolution is an extremely
useful operation that plays important roles in harmonic analysis, physics,
signal processing, and many other areas. For more details on convolution and
its applications beyond what is presented here we refer to texts such [DM72],
[Ben97], [Kat04], or [Heil11].

For simplicity, in this section we will take the domain of our functions to be
the real line R, but entirely similar results hold for functions on Rd. Later we
will also consider convolution of sequences indexed by Z (see Problem 9.1.18)
and convolution of 1-periodic functions (in Section 9.3.3). In fact, convolution
can be defined much more generally; all we require is that the domain of our
functions be a locally compact group (although if the group is not commuta-
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tive then there is a difference between left and right convolution). We refer
to [HR79] or [Rud90] for more details on convolution on abstract groups.

9.1.1 The Definition of Convolution

We defined convolution in Section 4.6.3, but for convenience we recall the
formal definition here.

Definition 9.1.1 (Convolution). Let f and g be measurable functions on
the real line R. The convolution of f and g is the function f ∗ g defined by

(f ∗ g)(x) =

∫ ∞

−∞

f(y) g(x − y) dy, (9.1)

as long as this integral exists. ♦

The convolution of two arbitrary measurable functions f and g will not
always exist. For example, if f(x) = x and g(x) = 1 then (f ∗ g)(x) is not
defined for any x. Consequently, when we speak of a convolution, we must be
careful to prove that f ∗ g exists in some sense—perhaps for all x, or perhaps
only for almost every x. We will give several different conditions on f and g
that imply that their convolution exists.

It is instructive to compute at least one convolution by hand. The following
exercise shows that the convolution of the box function χ

[− 1
2
, 1
2
] with itself is

the hat function on the interval [−1, 1].

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

Fig. 9.1 Graph of the hat function W.

Exercise 9.1.2. Let χ = χ
[− 1

2
, 1
2
], and let

W (x) = max
{
1 − |x|, 0

}

be the hat function on [−1, 1] that is pictured in Figure 9.1. Show that

χ ∗ χ = W. ♦
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Note that χ ∗ χ is continuous, while χ is discontinuous. This is typical—
convolution tends to be a type of smoothing procedure.

9.1.2 Existence

In Section 4.6.3, we used Fubini’s and Tonelli’s Theorems to establish one
sufficient condition for the existence of a convolution. Specifically, we saw
in Theorem 4.6.11 that if f and g are both integrable, then f ∗ g is defined
a.e. and is integrable. Some other properties of the convolution of integrable
functions were obtained in Problem 4.6.26. For convenience, we summarize
those facts as the following theorem.

Theorem 9.1.3. If f, g, h ∈ L1(R), then the following statements hold.

(a) F (x, y) = f(y) g(x − y) is an integrable function on R2.

(b) (f ∗ g)(x) exists for almost every x ∈ R.

(c) f ∗ g is measurable, and f ∗ g ∈ L1(R).

(d) ‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1.

(e) f ∗ g = g ∗ f a.e.

(f) (f ∗ g) ∗ h = f ∗ (g ∗ h) a.e.

(g) f ∗ (ag + bh) = a(f ∗ g) + b(f ∗ h) a.e. for all scalars a and b.

(h) Convolution commutes with translation, i.e.,

f ∗ (Tag) = (Taf) ∗ g = Ta(f ∗ g) for all a ∈ R. ♦

In summary, Theorem 9.1.3 tells us that L1(R) is closed with respect
to convolution, convolution is commutative and associative and satisfies the
distributive laws, and it also satisfies the submultiplicative norm inequality
‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1. Using the language of functional analysis, this says

that L1(R) is a commutative Banach algebra with respect to convolution.
One interesting feature of this algebra that we will prove in Section 9.2 is
that there is no identity element for convolution in L1(R).

Next we will give a different type of sufficient condition for the existence
of a convolution. Since (f ∗ g)(x) is the integral of f(y) g(x− y) with respect
to the variable y, in order for (f ∗ g)(x) to exist at a particular point x,
the product f(y) g(x − y) must be an integrable function of y. The simplest
sufficient condition that ensures that a product is integrable is provided by
Hölder’s Inequality, which says that the product of a function in Lp(R) with

a function in Lp′

(R) is integrable. The next exercise develops this idea, and
derives some of the properties of f ∗ g when f and g lie in dual Lebesgue
spaces. The special case p = 1 was considered earlier in Problem 4.6.27.
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Exercise 9.1.4. Fix 1 ≤ p ≤ ∞. Prove that if f ∈ Lp(R) and g ∈ Lp′

(R),
then the following statements hold.

(a) (f ∗ g)(x) is defined at every point x ∈ R, and (f ∗ g)(x) = (g ∗ f)(x).

(b) f ∗ g is bounded, and ‖f ∗ g‖∞ ≤ ‖f‖p ‖g‖p′ .

(c) For all a, x ∈ R,

∣∣(f ∗ g)(x) − (f ∗ g)(x − a)
∣∣ ≤ ‖f‖p ‖g − Tag‖p′ . (9.2)

(d) f ∗ g is continuous and bounded. Hence f ∗ g ∈ Cb(R), and we have
‖f ∗ g‖u ≤ ‖f‖p ‖g‖p′ .

(e) f ∗ g is uniformly continuous on R. ♦

Thus, if f ∈ Lp(R) and g ∈ Lp′

(R), then the convolution f ∗ g is defined
at every point and f ∗ g is bounded and uniformly continuous. As we will
discuss below, this is a reflection of the fact that convolution tends to be a
smoothing process.

For indices in the range 1 < p < ∞, we can prove a bit more.

Theorem 9.1.5. Assume 1 < p < ∞. If f ∈ Lp(R) and g ∈ Lp′

(R), then
f ∗ g ∈ C0(R).

Proof. We know from Exercise 9.1.4 that f ∗ g belongs to Cb(R). In order to
prove that f ∗ g belongs to the smaller space C0(R), we will show that there
exist functions hn ∈ C0(R) that converge uniformly to f ∗ g. Since C0(R) is
closed under uniform limits, this will imply that f ∗ g belongs to C0(R).

Since p is finite, Exercise 7.3.11 tells us that Cc(R) is dense in Lp(R).
Therefore, there exist functions fn ∈ Cc(R) such that fn → f in Lp-norm.
Since convergent sequences in a normed space are bounded, we have

M = sup
n∈N

‖fn‖p < ∞.

On the other hand, we have 1 < p′ < ∞, so Cc(R) is dense in Lp′

(R) as well.
Therefore there exist functions gn ∈ Cc(R) such that gn → g in Lp′

-norm.
By Problem 4.6.28, Cc(R) is closed under convolution. Hence the function

hn = fn ∗ gn belongs to Cc(R), which is a subspace of C0(R). Since

‖f ∗ g − hn‖u ≤ ‖f ∗ g − fn ∗ g‖u + ‖fn ∗ g − fn ∗ gn‖u

≤ ‖f − fn‖p ‖g‖p′ + ‖fn‖p ‖g − gn‖p′

≤ ‖f − fn‖p ‖g‖p′ + M ‖g − gn‖p′

→ 0 as n → ∞,

we see that hn → f ∗ g uniformly. But each function hn belongs to C0(R), so
it follows that f ∗ g ∈ C0(R). ⊓⊔
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Theorem 9.1.5 does not extend to p = 1. For example, if f = χ
[0,1] and

g = 1 then f ∈ L1(R) and g ∈ L∞(R), but their convolution is

(f ∗ g)(x) =

∫ ∞

−∞

f(y) g(x − y) dy =

∫ ∞

−∞

χ
[0,1](y) dy = 1.

We do have f ∗g ∈ Cb(R), but f ∗g /∈ C0(R). On the other hand, the following
exercise shows that Theorem 9.1.5 does extend to p = 1 if we replace the
hypothesis g ∈ L∞(R) with g ∈ C0(R).

Exercise 9.1.6. Show that if f ∈ L1(R) and g ∈ C0(R), then f ∗ g belongs
to C0(R). ♦

9.1.3 Convolution as Averaging

Now we take a closer look at the meaning of convolution. For each number
T > 0, let

χT =
1

2T
χ

[−T,T ].

This is a characteristic function that has been rescaled so that
∫

χT = 1 for
every T. The convolution of a function f ∈ L1(R) with χT at a point x ∈ R

is

(f ∗ χT )(x) =

∫ ∞

−∞

f(y)χT (x − y) dy =
1

2T

∫ x+T

x−T

f(y) dy. (9.3)

This is precisely the average of f on the interval [x−T, x+T ] (see Figure 9.2).
Since χT is bounded, Exercise 9.1.4 implies that f ∗ χT is continuous. Thus
f ∗ χT is a smoothed, averaged version of f.

x-T x x+T

H f * ΧT LHxL

Fig. 9.2 The height of the dashed box is (f ∗ χT )(x). The area of the dashed box is
R x+T

x−T f(y) dy, which equals the area under the graph of f between x − T and x + T.
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For a generic function g, the convolution of f and g can be interpreted as a
weighted average of f, with g weighting some parts of the domain more than
others. Technically, it may be better to think of the function g∗(x) = g(−x)
as the weighting function, since g∗ is the function being translated when we
compute

(f ∗ g)(x) =

∫ ∞

−∞

f(y) g∗(y − x) dy =

∫ ∞

−∞

f(y)Txg∗(y) dy.

In any case, (f ∗ g)(x) is a weighted average of f around the point x. Al-
ternatively, since convolution is commutative, we can equally view it as an
averaging of g using the weighting corresponding to f∗(x) = f(−x).

We usually think of averaging as a smoothing process, and the next exercise
presents a quantitative version of this statement. To motivate this exercise,
note that if we formally interchange an integral and a derivative, then we
obtain

d

dx
(f ∗ g)(x) =

d

dx

∫ ∞

−∞

f(y) g(x − y) dy (definition)

=

∫ ∞

−∞

f(y)
d

dx
g(x − y) dy (unjustified step)

=

∫ ∞

−∞

f(y) g′(x − y) dy (chain rule)

= (f ∗ g′)(x) (definition).

This is only a formal calculation, but it suggests that if g is differentiable,
then f ∗g should be differentiable as well and we should have (f ∗g)′ = f ∗g′.
The next exercise asks for a justification of this argument (one approach is to
treat the derivative as a limit and apply the Dominated Convergence Theo-
rem). Once this is done, it is straightforward to extend to higher derivatives
by induction. Recall that Cm

b (R) denotes the space of all m-times differen-
tiable functions g such that each of g, g′, . . . , g(m) is continuous and bounded.
Similarly, C∞

b (R) is the space of all infinitely differentiable functions g such
that g(k) is bounded for every k.

Exercise 9.1.7. (a) Prove that differentiation commutes with convolution in
the following sense: If f ∈ L1(R) and g ∈ C1

b (R), then f ∗ g ∈ C1
b (R) and

(f ∗ g)′ = f ∗ g′.

(b) Extend part (a) to higher derivatives. Specifically, prove that if f ∈ L1(R)
and g ∈ Cm

b (R) for some m ∈ N, then f ∗ g ∈ Cm
b (R) and

(f ∗ g)(k) = f ∗ g(k), for k = 0, . . . ,m.
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(c) Prove that if f ∈ L1(R) and g ∈ C∞
b (R), then f ∗ g ∈ C∞

b (R) and

(f ∗ g)(k) = f ∗ g(k), for all k ≥ 0. ♦

In summary, the convolution f ∗ g “inherits” the smoothness of g. Since
convolution is commutative, f ∗ g similarly inherits smoothness from f.

9.1.4 Approximate Identities

Consider again equation (9.3), which states that (f ∗χT )(x) is the average of
f over the interval [x − T, x + T ]. What happens to this average as T → 0?
As T decreases, the function χT = 1

2T
χ

[−T,T ] becomes a taller and taller
“spike” centered at the origin, with the height of the spike chosen so that
the integral of χT is always 1. Intuitively, averaging over smaller and smaller
intervals should give values (f ∗χT )(x) that are closer and closer to f(x). This
intuition is made precise in the Lebesgue Differentiation Theorem (Theorem
5.5.7), which states that if f ∈ L1(R), or even if f is merely locally integrable,
then

f(x) = lim
T→0

(f ∗ χT )(x) for almost every x ∈ R.

Thus f ≈ f ∗ χT when T is small. Although there is no identity element
for convolution in L1(R), the function χT is approximately an identity for
convolution, and this approximation becomes better and better the smaller
that T becomes (although the rate of convergence will be different for each
function f).

The Lebesgue Differentiation Theorem deals with pointwise a.e. conver-
gence. Here we will concentrate on convergence in L1-norm. We will prove
that we can create many different sequences of functions {kN}N∈N such that
f ∗kN → f in L1-norm for every f ∈ L1(R). The following definition specifies
the exact properties that we need the functions kN to possess.

Definition 9.1.8 (Approximate Identity). An approximate identity or
summability kernel on R is a family {kN}N∈N of functions in L1(R) such
that the following three conditions are satisfied.

(a) L1-normalization:
∫ ∞

−∞
kN (x) dx = 1 for every N.

(b) L1-boundedness: sup ‖kN‖1 = sup
∫ ∞

−∞
|kN (x)| dx < ∞.

(c) L1-concentration: For every δ > 0,

lim
N→∞

∫

|x|≥δ

|kN (x)| dx = 0. ♦

Property (a) of this definition says that each function kN has the same total
“signed mass” in the sense that its integral is 1, and property (c) says that
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most of this mass is being squeezed into smaller and smaller intervals around
the origin as N increases. Property (b) requires the “absolute mass” of kN

to be bounded independently of N. If kN ≥ 0 for every N, then property (a)
implies that ‖kN‖1 = 1 for every N, so property (b) is automatically satisfied
in this case.

The next exercise describes the “easy” way to construct an approximate
identity: Simply choose any integrable function k whose integral is 1, and
then dilate k appropriately to create kN .

Exercise 9.1.9. Let k ∈ L1(R) be any function that satisfies

∫ ∞

−∞

k(x) dx = 1.

Define kN by an L1-normalized dilation:

kN (x) = N k(Nx), for N ∈ N.

Prove that the family {kN}N∈N forms an approximate identity. ♦

Thus, to create an approximate identity, all we need to do is to choose an
integrable function k whose integral is 1, and set kN (x) = N k(Nx). We can
impose whatever extra properties on k that are convenient for our application.
For example, if we let k be smooth, then every kN will be smooth, and this
smoothness will be inherited by f ∗ kN .

Here is one particular approximate identity that appears often in applica-
tions of convolution in harmonic analysis.

Exercise 9.1.10 (The Fejér Kernel). The Fejér function is

w(x) =

(
sinπx

πx

)2

,

and the Fejér kernel is {wN}N∈N where wN (x) = Nw(Nx). Prove that w
is integrable and

∫
w = 1. Conclude that the Fejér kernel is an approximate

identity. ♦

The letter “w” is for “Weiss,” which was Fejér’s surname at birth. Plots of
w and w3 appears in Figure 9.3. We can see in that figure that wN becomes
more spike-like as N increases, just as χT becomes more spike-like as T → 0.

Now we prove our claim that if {kN}N∈N is an approximate identity, then
f ∗ kN → f in L1-norm for every function f ∈ L1(R). The proof of this
theorem illustrates two “standard tricks.” First, we introduce kN into one
term of the computation by using the fact that

∫
kN = 1. Second, we divide

the domain of integration into small and large parts in order to make use of
the L1-concentration property of an approximate identity.
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Fig. 9.3 Top: The Fejér function w(x) =
`

sin πx
πx

´2
. Bottom: The dilation w3(x) = 3w(3x)

of the Fejér function.

Theorem 9.1.11. If {kN}N∈N is an approximate identity, then

lim
N→∞

‖f − f ∗ kN‖1 = 0 for every f ∈ L1(R).

Proof. Fix any f ∈ L1(R). Since kN ∈ L1(R), we know that f ∗ kN ∈ L1(R),
and we wish to show that f ∗ kN approximates f well in L1-norm. Using the
fact that

∫
kN = 1, we compute that

‖f − f ∗ kN‖1 =

∫ ∞

−∞

|f(x) − (f ∗ kN )(x)| dx

=

∫ ∞

−∞

∣∣∣∣f(x)

∫ ∞

−∞

kN (t) dt −
∫ ∞

−∞

f(x − t) kN (t) dt

∣∣∣∣ dx

≤
∫ ∞

−∞

∫ ∞

−∞

|f(x) − f(x − t)| |kN (t)| dt dx

=

∫ ∞

−∞

∫ ∞

−∞

|f(x) − f(x − t)| |kN (t)| dx dt (by Tonelli)

=

∫ ∞

−∞

|kN (t)|
∫ ∞

−∞

|f(x) − Ttf(x)| dx dt

=

∫ ∞

−∞

|kN (t)| ‖f − Ttf‖1 dt. (9.4)
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We were allowed to interchange the order of integration in this calculation
because the integrands are nonnegative. We want to show that the quantity
in equation (9.4) is small when N is large.

Choose any ε > 0. Problem 7.3.16 tells us that translation is strongly
continuous on L1(R), i.e., there exists a δ > 0 such that

|t| < δ =⇒ ‖f − Ttf‖1 < ε.

The L1-boundedness property of an approximate identity implies that

K = sup
N∈N

‖kN‖1 < ∞,

and by the L1-concentration property we know that there is some N0 > 0
such that

∫
|t|≥δ

|kN (t)| dt < ε for all N ≥ N0. Therefore, for N ≥ N0 we can

continue equation (9.4) as follows:

(9.4) =

∫

|t|<δ

|kN (t)| ‖f − Ttf‖1 dt +

∫

|t|≥δ

|kN (t)| ‖f − Ttf‖1 dt

≤
∫

|t|<δ

|kN (t)| ε dt +

∫

|t|≥δ

|kN (t)|
(
‖f‖1 + ‖Ttf‖1

)
dt

≤ ε

∫ ∞

−∞

|kN (t)| + 2‖f‖1

∫

|t|≥δ

|kN (t)| dt

≤ εK + 2 ‖f‖1 ε.

Thus ‖f − f ∗ kN‖1 → 0 as N → ∞. ⊓⊔

Figure 9.4 illustrates the convergence derived in the preceding theorem. We
use the Fejér kernel {wN}N∈N constructed in Exercise 9.1.10, and depict the
convolution of the box function χ

[0,1] with some elements of the Fejér kernel.
Specifically, in Figure 9.4 we see the convolutions χ

[0,1]∗wN for N = 1, 5, and
25. From Exercise 9.1.7 we know that χ

[0,1] ∗ wN is a continuous function,
and Theorem 9.1.11 tells us that χ ∗ wN converges to χ in L1-norm as N
increases. This is in agreement with what we see in Figure 9.4.

We proved in Theorem 4.5.8 that Cc(R) is dense in L1(R). We will use
Theorem 9.1.11 to show that the seemingly “much tinier” space C∞

c (R) is
also dense in L1(R).

Theorem 9.1.12. C∞
c (R) is dense in L1(R).

Proof. Let k ∈ C∞
c (R) be any function that satisfies

∫
k = 1 (see Problem

9.1.26 for one construction of such a function). If we set kN (x) = N k(Nx),
then {kN}N∈N is an approximate identity, and ‖kN‖1 = ‖k‖1 for every N.

Choose any function f ∈ L1(R). Since kN is infinitely differentiable, Exer-
cise 9.1.7 implies that f ∗ kN is also infinitely differentiable. However, f ∗ kN
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Fig. 9.4 Convolution of the characteristic function χ
[0,1] with some elements of the Fejér

kernel {wN}N∈N. Top: χ
[0,1] ∗ w. Middle: χ

[0,1] ∗ w5. Bottom: χ
[0,1] ∗ w25.

need not be compactly supported. Therefore, we instead consider the func-
tions

fN = (f · χ[−N,N ]) ∗ kN , for N ∈ N. (9.5)

Because f ·χ[−N,N ] is integrable and kN is infinitely differentiable, fN is also
infinitely differentiable. Since f · χ[−N,N ] is zero a.e. outside of [−N,N ] and
kN is identically zero outside of some interval [a, b], a direct calculation shows
that their convolution, which is fN , is identically zero outside of the interval
[−N + a,N + b]. Therefore fN belongs to C∞

c (R).
Now, Theorem 9.1.11 tells us that f ∗ kN → f in L1-norm. Further, the

Dominated Convergence Theorem implies that f · χ[−N,N ] → f in L1-norm.
Consequently,
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‖f − fN‖1 ≤ ‖f − f ∗ kN‖1 + ‖f ∗ kN − (f · χ[−N,N ]) ∗ kN‖1

= ‖f − f ∗ kN‖1 + ‖(f − f · χ[−N,N ]) ∗ kN‖1

≤ ‖f − f ∗ kN‖1 + ‖f − f · χ[−N,N ]‖1 ‖kN‖1

= ‖f − f ∗ kN‖1 + ‖f − f · χ[−N,N ]‖1 ‖k‖1

→ 0 as N → ∞.

Therefore C∞
c (R) is dense in L1(R). ⊓⊔

Since C∞
c (R) ⊆ Cm

c (R), a corollary is that Cm
c (R) is dense in L1(R) for

every integer m ∈ N.

9.1.5 Young’s Inequality

Now we will show that most of the results of Section 9.1.4 can be extended
from L1(R) to Lp(R) for indices in the range 1 ≤ p < ∞. There is also an
extension for p = ∞, but for that case the appropriate extension space is
C0(R) rather than L∞(R). The key to the extension is given in the following
exercise.

Exercise 9.1.13. Fix 1 < p < ∞, and let f ∈ Lp(R) and g ∈ L1(R) be given.
Assume first that f and g are nonnegative, and apply Tonelli’s Theorem
to show that the integral defining (f ∗ g)(x) exists for a.e. x and f ∗ g is
measurable. Observe that

|(f ∗ g)(x)| ≤
∫ ∞

−∞

(∣∣f(y)
∣∣ ∣∣g(x − y)

∣∣1/p
) ∣∣g(x − y)

∣∣1/p′

dy. (9.6)

Apply Hölder’s Inequality with exponents p and p′ to the two factors that
appear on the right-hand side of equation (9.6) to show that

|(f ∗ g)(x)| ≤ ‖g‖1/p′

1

(∫ ∞

−∞

|f(y)|p |g(x − y)| dy

)1/p

.

Then use Tonelli again to show that

‖f ∗ g‖p ≤ ‖f‖p ‖g‖1. (9.7)

Finally, extend from nonnegative functions to arbitrary functions f ∈ Lp(R)
and g ∈ L1(R). ♦

The inequality in equation (9.7) is known as Young’s Inequality. Exercise
9.1.13 establishes Young’s Inequality for 1 < p < ∞, but Exercise 9.1.4 and
Theorem 9.1.3 show that it also holds for p = 1 and p = ∞. We formalize
this as the following theorem.
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Theorem 9.1.14 (Young’s Inequality). Fix 1 ≤ p ≤ ∞. If f ∈ Lp(R) and
g ∈ L1(R), then f ∗ g ∈ Lp(R) and

‖f ∗ g‖p ≤ ‖f‖p ‖g‖1. ♦

An alternative proof of Theorem 9.1.14 based on Minkowski’s Integral In-
equality is sketched in Problem 9.1.20. Additionally, Problem 9.1.21 presents
a more general version of Young’s Inequality: f ∗ g ∈ Lr(R) whenever
f ∈ Lp(R), g ∈ Lq(R), and 1 ≤ p, q, r ≤ ∞ satisfy the relationship

1

r
=

1

p
+

1

q
− 1.

According to Theorem 9.1.11, if {kN}N∈N is an approximate identity, then
f ∗ kN → f in L1-norm for every f ∈ L1(R). Suppose that we instead take
f ∈ Lp(R). The functions kN belong to L1(R) (this is part of the definition of
an approximate identity), so Young’s Inequality ensures that f ∗ kN belongs
to Lp(R). Will we have f ∗ kN → f in Lp-norm when p > 1? The following
result states that this is the case, as long as p is finite.

Theorem 9.1.15. Fix 1 ≤ p < ∞, and let {kN}N∈N be an approximate
identity. Then

lim
N→∞

‖f − f ∗ kN‖p = 0, for all f ∈ Lp(R).

Proof. The case p = 1 is Theorem 9.1.11, so we focus on 1 < p < ∞.
An approximate identity is uniformly bounded above in L1-norm, so let

K = sup ‖kN‖1 < ∞. Using Hölder’s Inequality and Tonelli’s Theorem, we
compute that

‖f − f ∗ kN‖p
p

=

∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞

(
f(x) − f(x − t)

)
kN (t) dt

∣∣∣∣
p

dx

≤
∫ ∞

−∞

(∫ ∞

−∞

|f(x) − f(x − t)| |kN (t)|1/p |kN (t)|1/p′

dt

)p

dx

≤
∫ ∞

−∞

(∫ ∞

−∞

|f(x) − f(x − t)|p |kN (t)| dt

)p/p (∫ ∞

−∞

|kN (t)| dt

)p/p′

dx

= ‖kN‖p/p′

1

∫ ∞

−∞

∫ ∞

−∞

|f(x) − f(x − t)|p |kN (t)| dt dx

≤ Kp/p′

∫ ∞

−∞

(∫ ∞

−∞

|f(x) − f(x − t)|p dx

)
|kN (t)| dt

= Kp/p′

∫ ∞

−∞

‖f − Ttf‖p
p |kN (t)| dt.
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From this point onwards, the proof is nearly identical to the proof of Theorem
9.1.11, using the fact that translation is strongly continuous in Lp(R) when
p is finite. ⊓⊔

Theorem 9.1.15 suggests that if we choose our approximate identity so that
kN is smooth, then we should be able to show that C∞

c (R) is dense in Lp(R),
just as we showed earlier that C∞

c (R) is dense in L1(R). In order to do this,
we need to know that f ∗ kN inherits the smoothness of kN . Exercise 9.1.7
showed that this is the case if f is integrable and kN and its derivatives are
bounded. However, if we assume instead that f ∈ Lp(R), then boundedness
of kN is not enough to ensure that f ∗kN will exist. On the other hand, if we
impose the stronger assumption that kN is compactly supported, then f ∗kN

will exist and it will inherit the smoothness of kN . This kind of flexibility
in imposing properties on an approximate identity can be useful in many
situations.

Exercise 9.1.16. Fix 1 ≤ p < ∞, and prove the following statements.

(a) If m ∈ N, f ∈ Lp(R), and g ∈ Cm
c (R), then f ∗ g ∈ Cm

0 (R) and

(f ∗ g)(k) = f ∗ g(k), for k = 0, . . . ,m. (9.8)

(b) C∞
c (R) is a dense subspace of Lp(R). ♦

Similar results hold for p = ∞ if we replace L∞(R) with C0(R).

Exercise 9.1.17. Prove the following statements.

(a) If {kN}N∈N is an approximate identity and f is bounded and uniformly
continuous on R (for example, if f ∈ C0(R)), then f ∗ kN → f uniformly.

(b) If f ∈ C0(R) and g ∈ Cm
c (R), then f ∗ g ∈ Cm

0 (R) and equation (9.8)
holds.

(c) C∞
c (R) is a dense subspace of C0(R). ♦

Problems

9.1.18. The convolution of two sequences a = (ak)k∈Z and b = (bk)k∈Z is the
sequence a ∗ b =

(
(a ∗ b)k

)
k∈Z

whose components are

(a ∗ b)k =

∞∑

j=−∞

aj bk−j , for k ∈ Z, (9.9)

as long as this series converges for each k ∈ Z.

(a) Fix 1 ≤ p ≤ ∞. Prove the following version of Young’s Inequality for
convolution of sequences: If a ∈ ℓp(Z) and b ∈ ℓ1(Z), then a ∗ b ∈ ℓp(Z) and
‖a ∗ b‖p ≤ ‖a‖p ‖b‖1.
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(b) Set δ = δ0 =
(
δ0n

)
n∈Z

. Show that δ is an identity for convolution on

ℓp(Z), i.e., x ∗ δ = x for every sequence x ∈ ℓp(Z).

Remark: In contrast, we will see in Corollary 9.2.7 that there is no function
in L1(R) that is an identity element for convolution of functions.

9.1.19. Show that if f, g ∈ L1(R) and f, g ≥ 0 a.e., then ‖f∗g‖1 = ‖f‖1 ‖g‖1.
Find a function h ∈ L1(R) such that ‖h ∗ h‖1 < ‖h‖2

1.

9.1.20. This problem gives an alternative proof of Young’s Inequality. Given
f ∈ Lp(R) and g ∈ L1(R), write out ‖f ∗g‖p as an iterated integral, and apply
Minkowski’s Integral Inequality (Problem 7.2.17) to obtain another proof of
equation (9.7).

9.1.21. This problem gives a general version of Young’s Inequality. Assume
that 1 < p, q, r < ∞ satisfy

1

r
=

1

p
+

1

q
− 1. (9.10)

Let f ∈ Lp(R) and g ∈ Lq(R) be given.

(a) Show that

|(f ∗ g)(x)| ≤
∫ ∞

−∞

(∣∣f(y)
∣∣p/r ∣∣g(x− y)

∣∣q/r
) ∣∣f(y)

∣∣p( 1
p
− 1

r
) ∣∣g(x− y)

∣∣q( 1
q
− 1

r
)
dy.

(b) Define
1

p1
=

1

p
− 1

r
and

1

p2
=

1

q
− 1

r
.

Use Hölder’s Inequality for a product of three functions (Problem 7.2.20),
with exponents r, p1, p2, to prove Young’s Inequality :

‖f ∗ g‖r ≤ ‖f‖p ‖g‖q.

(c) Show that Young’s Inequality also holds for any numbers r, p, q in the
range 1 ≤ p, q, r ≤ ∞ that satisfy equation (9.10).

9.1.22. Fix 1 ≤ p < q < ∞, and suppose that f ∈ Lp(R)∩Lq(R). Prove that
there exist functions gn ∈ C∞

c (R) such that gn → f in Lp-norm and gn → f
in Lq-norm.

9.1.23. Let {kN}N∈N be an approximate identity. Show that if a function
f ∈ L1(R) ∩ L∞(R) is continuous at a point x ∈ R, then

lim
N→∞

(f ∗ kN )(x) = f(x).

9.1.24. Let k : R → R be a bounded measurable function such that
∫

k = 1
and k(x) = 0 for |x| ≥ 1, and define kN (x) = N k(Nx). Given f ∈ L1(R),
prove that (f ∗ kN )(x) → f(x) at every Lebesgue point x of f.
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9.1.25. (a) Exhibit functions f ∈ L1(R) and g ∈ L∞(R) such that

lim
x→∞

(f ∗ g)(x) does not exist.

(b) Prove that if f ∈ L1(R) and g ∈ L∞(R), then

lim
x→∞

∫ b

−∞

f(x − y) g(y) dy = 0, for all b ∈ R.

(c) Suppose that g ∈ L∞(R) is such that L = limx→∞ g(x) exists. Given
f ∈ L1(R), show that limx→∞ (f ∗ g)(x) = L

∫ ∞

−∞
f.

9.1.26. Let γ(x) = e−1/x χ
[0,∞)(x) and β(x) = γ

(
1−x2

)
. Prove the following

statements.

(a) γ(x) = 0 for all x ≤ 0, and γ(x) > 0 for all x > 0.

(b) For each n ∈ N, there exists a polynomial pn of degree n− 1 such that

γ(n)(x) =
pn(x)

x2n
γ(x).

(c) γ ∈ C∞(R) and γ(n)(0) = 0 for every n ≥ 0.

(d) β ∈ C∞
c (R), β(x) > 0 for |x| < 1, and β(x) = 0 for |x| ≥ 1.

9.1.27. Choose any function k ∈ C∞
c (R) that satisfies

∫
k = 1, k ≥ 0, and

k(x) = 0 for |x| > 1. Show that the convolution θ = χ
[−2,2] ∗ k has the

following properties:

(a) θ ∈ C∞
c (R),

(b) 0 ≤ θ ≤ 1,

(c) θ(x) = 1 for |x| ≤ 1,

(d) θ(x) = 0 for |x| > 3.

9.1.28. Suppose that f is differentiable everywhere on R, and f, f ′ ∈ L1(R).
Let θ ∈ C∞

c (R) be the function constructed in Problem 9.1.27, and for each
n ∈ N define θn(x) = θ( x

n ). Prove the following statements.

(a) sup ‖θ′n‖∞ < ∞.

(b) f ′ θn → f ′ and f θ′n → 0 in L1-norm.

(c)
∫ ∞

−∞
f ′ = 0.

9.1.29. This problem will derive a C∞-analogue of Urysohn’s Lemma for
functions on R. Let K be a compact subset of R, and assume that U ⊇ K is
open. Define d = dist(K, R\U) = inf

{
|x − y| : x ∈ K, y /∈ U

}
, and set

V =
{

y ∈ R : dist(y,K) <
d

3

}
.
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Choose any function k ∈ C∞
c (R) that satisfies

∫
k = 1, k ≥ 0, and k(x) = 0

for |x| > d/3. Show that the convolution θ = χV ∗ k has the following prop-
erties:

(a) θ ∈ C∞
c (R),

(b) 0 ≤ θ ≤ 1,

(c) θ(x) = 1 for x ∈ K,

(d) θ(x) = 0 for x /∈ U.

9.1.30. Fix 1 ≤ p ≤ ∞. If f ∈ Lp(R) and there exists a function h ∈ Lp(R)
such that

lim
a→0

∥∥∥h − f − Taf

a

∥∥∥
p

= 0,

then we call h a strong Lp-derivative of f and denote it by h = ∂pf. Assume

that f ∈ Lp(R) has a strong Lp-derivative. Given g ∈ Lp′

(R), prove that f ∗g
is differentiable at every point, and (f ∗ g)′ = ∂pf ∗ g.

9.1.31. Show that if f ∈ Cm
c (R) and g ∈ L∞(R), then f ∗ g ∈ Cm

b (R) and
(f ∗ g)(k) = f (k) ∗ g for k = 1, . . . ,m.

9.1.32. Redo Problem 7.4.5, but with Cc(R) replaced by C∞
c (R).

9.1.33. Suppose that f ∈ L∞(R) satisfies lima→0 ‖Taf − f‖∞ = 0. Prove
that there exists a uniformly continuous function g such that f = g a.e.

9.1.34. We say that a function f : R → R is additive if f(x+y) = f(x)+f(y)
for all x, y ∈ R.

(a) Show that if f is additive, then f(rx) = rf(x) for all x ∈ R and r ∈ Q.

(b) Prove that a continuous function f is additive if and only if f has the
form f(x) = cx for some c ∈ R.

(c) Since the set Q of rational numbers is a field, we can consider the vector
space R over the field Q. A consequence of the Axiom of Choice is that every
vector space has a Hamel basis (in fact, this statement is equivalent to the
Axiom of Choice). Consequently, there exists a Hamel basis {xi}i∈I for R

over Q (note that this index set I will necessarily be uncountable). That is,

every nonzero number x ∈ R can be written uniquely as x =
∑N

k=1 ckxik
for

some distinct indices i1, . . . , iN ∈ I and nonzero rational scalars c1, . . . , cN .
Use this to show that there exists a function f : R → R that is additive yet f
does not satisfy f(cx) = cf(x) for all c, x ∈ R. Thus f is not linear, even
though f respects addition.

(d) Suppose that f is additive and f(x) = 0 for all x in the Cantor set C.
Prove that f = 0.

9.1.35. Assume that f : R → R is additive, i.e., f(x + y) = f(x) + f(y) for
all x, y ∈ R, and suppose further that f is measurable.

(a) Prove that the function g(x) = e2πif(x) has the following properties.
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• g(x + y) = g(x) g(y) for all x, y ∈ R.

• If φ ∈ Cc(R), then there exists a scalar Cφ such that φ ∗ g = Cφ g.

• There exists some φ ∈ C1
c (R) such that Cφ 6= 0.

• g is differentiable and g′(x) = βg(x) for some constant β ∈ C.

• There exists an α ∈ R such that g(x) = e2πiαx for all x ∈ R.

(b) To emphasize that care will be needed in the next step, exhibit a
discontinuous function h : R → R such that e2πih(x) is continuous on R.

(c) Prove that f(x) = αx for all x ∈ R.

9.2 The Fourier Transform

The Fourier transform is the cornerstone of harmonic analysis. We will give
a brief introduction to the Fourier transform on the space L1(R). For more
detailed introductions to harmonic analysis, we refer to texts such as [DM72],
[Ben97], [SS03] or [Kat04].

The complex exponential functions eξ(x) = e2πiξx play a fundamental role
in the definition of the Fourier transform. The graph of eξ is

{
(x, e2πiξx) : x ∈ R

}
⊆ R × C.

Identifying R×C with R×R2 = R3, this graph is a helix in R3 coiling around
the x-axis, which runs down the center of the helix (see Figure 9.5). In higher
dimensions, the frequency is a vector ξ ∈ Rd, and the complex exponential
function eξ : Rd → C is given by

eξ(x) = e2πiξ·x, for x ∈ Rd,

where ξ · x is the usual dot product of vectors in Rd.
We define the Fourier transform of an integrable function on R as follows.

Definition 9.2.1 (Fourier Transform on L1(R)). The Fourier transform

of f ∈ L1(R) is the function f̂ : R → C defined by

f̂(ξ) =

∫ ∞

−∞

f(x) e−2πiξx dx, for ξ ∈ R. (9.11)

For notational clarity, we sometimes write f
∧

or (f)
∧

instead of f̂ . ♦

If f is integrable, then f̂(ξ) exists for every ξ ∈ R because

∫ ∞

−∞

|f(x) e−2πiξx| dx =

∫ ∞

−∞

|f(x)| dx = ‖f‖1 < ∞. (9.12)



9.2 The Fourier Transform 345

0

1

2

3

4

1

0

-1

0

1

Fig. 9.5 Graph of eξ(x) = e2πiξx for ξ = 2 and 0 ≤ x ≤ 4.

Thus f̂(ξ) is defined at every point, even though f(x) need only be defined

almost everywhere. Additionally, f̂(ξ) is complex in general, even if f is purely
real-valued. Therefore, for the remainder of this chapter we will assume that
all functions are complex-valued. That is,

from now on we take F = C.

Remark 9.2.2. The definition of the Fourier transform of f ∈ L1(R) closely
resembles the definition of the Fourier coefficients of a function f ∈ L2[0, 1]

that are given in equation (8.11). The nth Fourier coefficient f̂(n) of a func-
tion f ∈ L2[0, 1] is

f̂(n) =

∫ 1

0

f(x) e−2πinx dx,

which is the inner product in the Hilbert space L2[0, 1] of f with the function
en(x) = e2πinx. In contrast, even if we took f in L2(R) instead of L1(R), the

formula for f̂(ξ) given in equation (9.11) is not an inner product of two func-
tions in the Hilbert space L2(R) because eξ(x) = e2πiξx does not belong to
L2(R). Even so, the apparent similarities between Fourier coefficients and the
Fourier transform are real indications that there is a fundamental underlying



346 9 Convolution and the Fourier Transform

connection between these two objects. Indeed, Fourier series and the Fourier
transform are two special cases of abstract Fourier transforms on locally com-
pact abelian groups. Another special case is the discrete Fourier transform,
or DFT, which plays a key role in digital signal processing. The DFT is the
Fourier transform on the finite cyclic group ZN = {0, 1, . . . , N − 1} (under
addition mod N). More details on abstract Fourier transforms can be found
in the texts referenced at the beginning of this section. ♦

We prove next that f̂ is continuous on R.

Lemma 9.2.3. If f ∈ L1(R), then f̂ is bounded and uniformly continuous
on R, and

‖f̂ ‖∞ ≤ ‖f‖1. (9.13)

Proof. Since

|f̂(ξ)| =

∣∣∣∣
∫ ∞

−∞

f(x) e−2πiξx dx

∣∣∣∣ ≤
∫ ∞

−∞

|f(x) e−2πiξx| dx = ‖f‖1,

we see that f̂ is bounded and ‖f̂ ‖∞ ≤ ‖f‖1.

To prove that f̂ is continuous, fix ξ ∈ R and choose any η ∈ R. Then

∣∣f̂(ξ + η) − f̂(ξ)
∣∣ =

∣∣∣∣
∫ ∞

−∞

f(x) e−2πi(ξ+η)x dx −
∫ ∞

−∞

f(x) e−2πiξx dx

∣∣∣∣

≤
∫ ∞

−∞

|f(x)| |e−2πiξx| |e−2πiηx − 1| dx

=

∫ ∞

−∞

|f(x)| |e−2πiηx − 1| dx. (9.14)

Note that the quantity after the equality in equation (9.14) is independent
of ξ. Now, for almost every x (specifically, any x where f(x) is defined), we
have that

lim
η→0

|f(x)| |e−2πiηx − 1| = 0.

Additionally,
|f(x)| |e−2πiηx − 1| ≤ 2 |f(x)| ∈ L1(R).

Therefore we can apply the Dominated Convergence Theorem and compute
that

sup
ξ∈R

∣∣f̂(ξ + η) − f̂(ξ)
∣∣ ≤

∫ ∞

−∞

|f(x)| |e−2πiηx − 1| dx → 0 as η → 0.

This implies that f̂ is uniformly continuous. ⊓⊔

We will compute the Fourier transform of the characteristic function of
the symmetric interval [−T, T ].



9.2 The Fourier Transform 347

Example 9.2.4. By direct computation,

(χ[−T,T ])
∧

(ξ) =

∫ T

−T

e−2πiξx dx =

{
sin 2πTξ

πξ , if ξ 6= 0,

2T, if ξ = 0.
(9.15)

This is a continuous function, so we usually implicitly assume that it is defined
appropriately at the origin and just write (χ[−T,T ])

∧

(ξ) = sin 2πTξ
πξ .

An important special case is the (normalized) sinc function

sinc(ξ) =
sin πξ

πξ
= (χ[− 1

2
, 1
2
])

∧

(ξ). (9.16)

If we compare the sinc function to the Fejér function w defined in Exercise
9.1.10, we see that

w(ξ) = sinc(ξ)2.

The Fejér function is both integrable and nonnegative, while the sinc function
is neither. ♦

Since χ
[−T,T ] is integrable while the sinc function is not, the preceding

example shows that the Fourier transform of an integrable function need not
be integrable. On the other hand, the sinc function belongs to C0(R), and

we prove next that f̂ always belongs to C0(R) whenever f is integrable. An
alternative proof of Theorem 9.2.5 is outlined in Problem 9.2.24.

Theorem 9.2.5 (Riemann–Lebesgue Lemma). If f ∈ L1(R), then f̂ ∈
C0(R).

Proof. We saw in Lemma 9.2.3 that f̂ is continuous, so it only remains to
show that f̂ decays to zero at ±∞. Since e−πi = −1, for ξ 6= 0 we have

f̂(ξ) =

∫ ∞

−∞

f(x) e−2πiξx dx (9.17)

= −
∫ ∞

−∞

f(x) e−2πiξx e−2πiξ( 1
2ξ

) dx

= −
∫ ∞

−∞

f(x) e−2πiξ(x+ 1
2ξ

) dx

= −
∫ ∞

−∞

f
(
x − 1

2ξ

)
e−2πiξx dx. (9.18)

Averaging equalities (9.17) and (9.18) yields

f̂(ξ) =
1

2

∫ ∞

−∞

(
f(x) − f

(
x − 1

2ξ

))
e−2πiξx dx.

Hence, using the strong continuity of translation derived in Exercise 4.5.9,
we compute that
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|f̂(ξ)| ≤ 1

2

∫ ∞

−∞

∣∣∣f(x) − f
(
x − 1

2ξ

)∣∣∣ dx =
1

2
‖f − T 1

2ξ
f‖1 → 0 as |ξ| → ∞.

Therefore f̂ ∈ C0(R). ⊓⊔

The Riemann–Lebesgue Lemma tells us that the Fourier transform maps
L1(R) into C0(R). In Corollary 9.2.12, we will prove that the Fourier trans-
form is injective on L1(R). The range of the Fourier transform is the set

A(R) =
{
f̂ : f ∈ L1(R)

}
. (9.19)

We will see in Corollary 9.2.16 that A(R) is a dense, but proper, subspace
of C0(R). Thus, although the Fourier transform is injective and has dense
range, it is not a surjective mapping of L1(R) onto C0(R).

The next exercise, which is an application of Fubini’s Theorem, shows that
the Fourier transform converts convolution into pointwise multiplication.

Exercise 9.2.6. If f, g ∈ L1(R), then it follows from Theorem 9.1.3 that
their convolution f ∗ g belongs to L1(R). Prove that the Fourier transform of
f ∗ g is the product of the Fourier transforms of f and g:

(f ∗ g)
∧

(ξ) = f̂(ξ) ĝ(ξ), for all ξ ∈ R. ♦ (9.20)

Now we use Exercise 9.2.6 to prove that there is no identity element for
convolution in L1(R).

Corollary 9.2.7. There is no function δ ∈ L1(R) such that f ∗ δ = f for
every f ∈ L1(R).

Proof. Suppose that there were such a function δ in L1(R). Then for every
f ∈ L1(R) we would have

f̂(ξ) = (f ∗ δ)
∧

(ξ) = f̂(ξ) δ̂(ξ).

In particular, the function f = χ
[−1,1] is integrable and f̂(ξ) 6= 0 for a.e. ξ.

Therefore δ̂(ξ) = 1 for a.e. ξ. But this contradicts the Riemann–Lebesgue
Lemma, so no such function δ can exist. ⊓⊔

9.2.1 The Inversion Formula

Our next goal is to prove the Inversion Formula for the Fourier transform.
This theorem will show that if f ∈ L1(R) is such that its Fourier transform

f̂ is also integrable, then we can recover f from f̂ . This is similar in spirit
to Theorem 8.4.2, which states that the Fourier coefficients of a function
f ∈ L2[0, 1] can be used to recover f. That result follows from the fact that
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the trigonometric system {e2πinx}n∈Z is an orthonormal basis for L2[0, 1].
Here the situation is different, because the uncountable system {e2πiξx}ξ∈R

is not an orthonormal basis for L2(R). Indeed, e2πiξx does not belong to
L2(R) for any ξ. Even so, we will be able to use convolution and approximate
identities to prove the Inversion Formula.

In order to state our results more succinctly, we introduce the following
notation.

Definition 9.2.8 (Inverse Fourier Transform on L1(R)). The inverse
Fourier transform of f ∈ L1(R) is

∨

f (ξ) =

∫ ∞

−∞

f(x) e2πiξx dx, for ξ ∈ R. ♦ (9.21)

The inverse Fourier transform behaves much like the Fourier transform.

Indeed, if f ∈ L1(R) then both f̂ and
∨

f are well-defined continuous functions,
and

∨

f (ξ) = f̂(−ξ), for all ξ ∈ R.

Therefore, by making an appropriate change of variables, every result that we
have stated so far for the Fourier transform has an analogue for the inverse
Fourier transform.

The word “inverse” in Definition 9.2.8 needs to be interpreted with some

care. Even if f is integrable, its Fourier transform g = f̂ need not be inte-
grable, and so its “inverse Fourier transform”

∨

g might not even exist, much
less equal f. However, we will prove in this section that if it is the case that

f and f̂ are both integrable then
(
f̂

)∨
= f. It is only in this restricted sense

that the inverse Fourier transform is the inverse of the Fourier transform
for integrable functions. We state that theorem next, but then must develop
some machinery before we can prove it.

Theorem 9.2.9 (Inversion Formula). If f, f̂ ∈ L1(R), then both f and f̂
are continuous, and

f(x) =
(
f̂

)∨
(x) =

∫ ∞

−∞

f̂(ξ) e2πiξx dξ, for every x ∈ R. (9.22)

Similarly,

f(x) =
( ∨

f
)∧

(x) =

∫ ∞

−∞

∨

f (ξ) e−2πiξx dξ, for every x ∈ R. ♦

These equations give us some insight into why the Fourier transform is
such an important operator. As long as f and f̂ are both integrable, equation
(9.22) says that f can be represented as an integral (in effect, a continuous

sum or superposition) of f̂(ξ) e2πiξx over all frequencies ξ ∈ R. The Fourier

transform f̂(ξ) tells us what amplitude to assign to the pure tone e2πiξx
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of frequency ξ, and by summing all of these pure tones with the correct
amplitudes we obtain f. In essence, the pure tones are a set of very simple
building blocks that we can use to build very complicated functions f.

In order to prove the Inversion Formula, we will make use of the Fejér
kernel {wN}N∈N that was introduced in Exercise 9.1.10. Explicitly, wN (x) =
Nw(Nx) where w is the Fejér function

w(x) =

(
sin πx

πx

)2

= sinc(x)2.

Exercise 9.1.10 showed that the Fejér kernel is an approximate identity. The
Fejér kernel is not the only approximate identity that we could use to prove
the Inversion Formula, but it does have some convenient properties. Specif-
ically, w is continuous, integrable, even, and nonnegative, and the following
lemma shows that it is the Fourier transform of a continuous, compactly
supported, even, nonnegative function.

Lemma 9.2.10. Let W (x) = max
{
1 − |x|, 0

}
denote the hat function sup-

ported on the interval [−1, 1]. Then Ŵ = w =
∨

W.

Proof. Exercise 9.1.2 showed that W = χ ∗χ where χ = χ
[− 1

2
, 1
2
]. Further, we

saw in Example 9.2.4 that χ̂ is the sinc function. Since the Fourier transform
converts convolution into multiplication (Exercise 9.2.6), it follows that

Ŵ = (χ ∗ χ)
∧

= (χ̂)2 = sinc2 = w. (9.23)

Finally, since W is even, a change of variables shows that

w(x) = Ŵ(x) =

∫ ∞

−∞

W (x) e−2πiξx dξ

=

∫ ∞

−∞

W (ξ) e2πiξx dξ =
∨

W (x). ⊓⊔ (9.24)

Since w =
∨

W, we have ŵ =
( ∨

W
)∧

. Once we prove the Inversion Formula,

we will see that
( ∨

W
)∧

= W and therefore ŵ = W, but we have not proved
this yet.

As a first step toward proving the Inversion Formula, we will consider a
modified version of equation (9.22) obtained by inserting the “convergence
factor”

W (ξ/N) = max

{
1 − |ξ|

N
, 0

}
,

which is the hat function with height 1 supported on the interval [−N,N ] (see
Figure 9.6). Inserting this factor will allow us to prove that the convolution

f ∗ wN can be reconstructed from f̂ . This is quite similar to how Cesàro
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Fig. 9.6 Graph of W (ξ/N) = max{1 − |ξ|/N, 0}.

summation can sometimes be used to deal with infinite series that do not
converge. Indeed, when we consider the analogous theorem for Fourier series
in Section 9.3, we will see that using the Fejér kernel in that setting is precisely
the same as using Cesàro summation on a Fourier series.

Lemma 9.2.11. If f ∈ L1(R), then for each N > 0 we have

(f ∗ wN )(x) =

∫ ∞

−∞

f̂(ξ)W (ξ/N) e2πiξx dξ

=

∫ N

−N

f̂(ξ)

(
1 − |ξ|

N

)
e2πiξx dξ. (9.25)

Proof. Since f is integrable and wN ∈ Cc(R), we know from Exercise 9.1.4
that f ∗ wN is continuous. Making a change of variables in equation (9.24),
we have

wN (x) = Nw(Nx) =

∫ ∞

−∞

W (ξ/N) e2πiξx dξ.

Therefore, assuming that we can interchange integrals in the following calcu-
lation, we compute that

(f ∗ wN )(x) =

∫ ∞

−∞

f(y)wN (x − y) dy

=

∫ ∞

−∞

f(y)

∫ ∞

−∞

W (ξ/N) e2πiξ(x−y) dξ dy

=

∫ ∞

−∞

(∫ ∞

−∞

f(y) e−2πiξy dy

)
W (ξ/N) e2πiξx dξ

=

∫ ∞

−∞

f̂(ξ)W (ξ/N) e2πiξx dξ.

Exercise: Use Fubini’s Theorem to justify the interchange of integrals. ⊓⊔
Now we obtain the Inversion Formula by taking the limit on both sides

of equation (9.25). Before reading the proof, it may be helpful to review
Notation 7.2.8, which gives our conventions for the meaning of continuity of
elements of L1(R).

Proof (of Theorem 9.2.9). Suppose that f ∈ L1(R) is such that f̂ ∈ L1(R).

Since f is integrable, f̂ is continuous. On the other hand, since f̂ is integrable,
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(
f̂

)∨
is continuous. The function f ∗ wN is also continuous, because it is

the convolution of the integrable function f with the continuous, compactly
supported function wN .

Fix x ∈ R. Then for every ξ ∈ R we have

lim
N→∞

f̂(ξ)W (ξ/N) e2πiξx = f̂(ξ) e2πiξx
(

lim
N→∞

W (ξ/N)
)

= f̂(ξ) e2πiξx.

Also, since 0 ≤ W ≤ 1,

|f̂(ξ)W (ξ/N) e2πiξx| ≤ |f̂(ξ)| ∈ L1(R).

Holding x fixed, we can therefore apply the Dominated Convergence Theorem
to obtain

lim
N→∞

(f ∗ wN )(x) = lim
N→∞

∫ ∞

−∞

f̂(ξ)W (ξ/N) e2πiξx dξ

=

∫ ∞

−∞

f̂(ξ) e2πiξx dξ =
(
f̂

)∨
(x). (9.26)

On the other hand, since the Fejér kernel is an approximate identity we
know that f ∗wN → f in L1-norm. Consequently there is a subsequence such
that

lim
k→∞

(f ∗ wNk
)(x) = f(x), for a.e. x. (9.27)

Combining equations (9.26) and (9.27), we see that

(
f̂

)∨
(x) = lim

k→∞
(f ∗ wNk

)(x) = f(x) a.e.

Thus f is equal a.e. to the continuous function
(
f̂

)∨
. Hence f and

(
f̂

)∨
are

the same element of L1(R), and so we can redefine f on a set of measure zero

in such a way that f(x) =
(
f̂

)∨
(x) for every x. ⊓⊔

As a corollary, since both w and W are integrable, by combining the In-
version Formula with Lemma 9.2.10 we see that

ŵ = (
∨

W )
∧

= W = (Ŵ)
∨

=
∨

w.

Next, we use the Inversion Formula to prove that integrable functions are
uniquely determined by their Fourier transforms.

Corollary 9.2.12 (Uniqueness Theorem). If f, g ∈ L1(R), then

f = g a.e. ⇐⇒ f̂ = ĝ a.e.

In particular,
f = 0 a.e. ⇐⇒ f̂ = 0 a.e.
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Proof. The first equivalence is a consequence of the second (consider f − g).

If f = 0 a.e., then we immediately obtain f̂ = 0 everywhere. On the other

hand, if f̂ = 0 a.e., then we have both f, f̂ ∈ L1(R), so the Inversion Formula

applies and we obtain f =
(
f̂

)∨
=

∨

0 = 0. ⊓⊔

9.2.2 Smoothness and Decay

One of the important properties of the Fourier transform is that it inter-
changes smoothness and decay. For our first theorem in this direction, we
will assume that f ∈ L1(R) has a certain amount of decay in the sense that
xmf(x) ∈ L1(R). This is not a pointwise decay requirement, but rather a
kind of “average decay” assumption. As x increases, the value of |xmf(x)|
becomes increasingly large compared to the value of |f(x)|, yet if xmf(x) is
integrable then the area under the graph of |xmf(x)|, and not merely the
area under |f(x)|, must be finite. We will prove that if f satisfies this decay

hypothesis, then f̂ is smooth in the sense that it is m-times differentiable.

Although it is a slight abuse of notation, we will write
(
(−2πix)kf(x)

)∧

to

denote the Fourier transform of the function g(x) = (−2πix)kf(x).

Theorem 9.2.13. Let f ∈ L1(R) and m ∈ N be given. Then

xmf(x) ∈ L1(R) =⇒ f̂ ∈ Cm
0 (R),

i.e., f̂ is m-times differentiable and f̂ , f̂ ′, . . . , f̂ (m) ∈ C0(R). Furthermore,
in this case we have xkf(x) ∈ L1(R) for k = 0, . . . ,m, and the kth derivative

of f̂ is the Fourier transform of (−2πix)kf(x):

f̂ (k) =
dk

dξk
f̂ =

(
(−2πix)kf(x)

)∧
, for k = 0, . . . ,m. (9.28)

Proof. We will proceed by induction. The base step is m = 1. To motivate
equation (9.28) and its proof, note that if we were allowed to interchange a
derivative with an integral, then we could write

d

dξ
f̂(ξ) =

d

dξ

∫ ∞

−∞

f(x) e−2πiξx dx

=

∫ ∞

−∞

f(x)
d

dξ
e−2πiξx dx

=

∫ ∞

−∞

f(x) (−2πix) e−2πiξx dx

=
(
−2πixf(x)

)∧

(ξ).
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Essentially, our task is to justify this interchange.
Since m = 1, our hypothesis is that f and xf(x) both belong to L1(R).

For simplicity of notation, set ex(ξ) = e−2πiξx. Then

f̂(ξ + η) − f̂(ξ)

η
=

∫ ∞

−∞

f(x)
e−2πi(ξ+η)x − e−2πiξx

η
dx

=

∫ ∞

−∞

f(x)
ex(ξ + η) − ex(ξ)

η
dx.

The integrand converges pointwise (as η → 0) for almost every x, because for
every x where f(x) is defined we have

lim
η→0

f(x)
ex(ξ + η) − ex(ξ)

η
= f(x) e′x(ξ) = f(x) (−2πix) e−2πiξx.

Since |eiθ − 1| ≤ |θ| for every real number θ, we also have that the integrand
is bounded by an integrable function:

∣∣∣∣f(x)
ex(ξ + η) − ex(ξ)

η

∣∣∣∣ =

∣∣∣∣f(x)
e−2πi(ξ+η)x − e−2πiξx

η

∣∣∣∣

= |f(x)| |e−2πiξx|
∣∣∣∣
e−2πiηx − 1

η

∣∣∣∣

≤ |f(x)|
∣∣∣∣
−2πiηx

η

∣∣∣∣

= 2π |xf(x)| ∈ L1(R).

Therefore we can apply the Dominated Convergence Theorem to obtain

f̂
′
(ξ) = lim

η→0

f̂(ξ + η) − f̂(ξ)

η

= lim
η→0

∫ ∞

−∞

f(x)
ex(ξ + η) − ex(ξ)

η
dx

=

∫ ∞

−∞

lim
η→0

f(x)
ex(ξ + η) − ex(ξ)

η
dx (DCT)

=

∫ ∞

−∞

f(x) (−2πix) e−2πiξx dx

=
(
(−2πix)f(x)

)∧

(ξ).

Thus, f̂ is differentiable, and since f̂ ′ is the Fourier transform of the in-
tegrable function (−2πix)f(x), the Riemann–Lebesgue Lemma implies that

f̂ ′ ∈ C0(R). This establishes the base step.
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Now we proceed to the inductive step. Suppose that the result holds for
some m ≥ 1, and suppose that f ∈ L1(R) is such that xm+1f(x) ∈ L1(R).

Fix any integer 1 ≤ k ≤ m + 1. Note that

|x| ≤ 1 =⇒ |xkf(x)| ≤ |f(x)|,

and
|x| > 1 =⇒ |xkf(x)| ≤ |xm+1f(x)|.

Since both f and xm+1f(x) are integrable, it follows that xkf(x) ∈ L1(R).
In particular, xkf(x) is integrable for k = 1, . . . ,m, so the inductive hy-

pothesis implies that f̂ ∈ Cm
0 (R). Further, if we set g(x) = (−2πix)m f(x),

then
ĝ =

(
(−2πix)m f(x)

)∧

= f̂ (m).

Now, g(x), xg(x) ∈ L1(R), so by the base step we have ĝ ∈ C1
0 (R) and

f̂ (m+1) = ĝ ′ =
(
−2πix g(x)

)∧

=
(
(−2πix)m+1 f(x)

)∧

.

The completes the induction. ⊓⊔

Next we will prove a complementary result showing that smoothness of f
implies decay of f̂ . The proof will apply the Banach–Zaretsky Theorem and
the Fundamental Theorem of Calculus.

Theorem 9.2.14. Let f ∈ L1(R) and m ∈ N be given. If f is everywhere
m-times differentiable and if f, f ′, . . . , f (m) ∈ L1(R), then

(f (k))
∧

(ξ) = (2πiξ)k f̂(ξ), for k = 0, . . . ,m.

Consequently,

|f̂(ξ)| ≤ ‖f (m)‖1

|2πξ|m , for all ξ 6= 0. (9.29)

Proof. We proceed by induction. The base step is m = 1, i.e., we assume
that f is everywhere differentiable and f, f ′ ∈ L1(R). Then Corollary 6.3.3,
which is a consequence of the Banach–Zaretsky Theorem, implies that f is
absolutely continuous on every finite interval. Therefore the Fundamental
Theorem of Calculus (Theorem 6.4.2) applies to f, so we have

f(x) − f(0) =

∫ x

0

f ′(t) dt, for all x ∈ R.

Since f ′ is integrable, the following limit exists:

lim
x→∞

f(x) = f(0) + lim
x→∞

∫ x

0

f ′(t) dt = f(0) +

∫ ∞

0

f ′(t) dt.
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Since f is both continuous and integrable, the only way that this limit can
exist is if it is zero. Therefore f(x) → 0 as x → ∞. A symmetric argument
applies as x → −∞, so we conclude that f ∈ C0(R).

Integration by parts is valid for absolutely continuous functions by Theo-
rem 6.4.6, so for every a < b we have

∫ b

a

f ′(x) e−2πiξx dx = e−2πiξbf(b) − e−2πiξaf(a) + 2πiξ

∫ b

a

f(x) e−2πiξx dx.

Consequently, since f and f ′ are integrable, we see that

f̂ ′ (ξ) =

∫ ∞

−∞

f ′(x) e−2πiξx dx

= lim
a→−∞
b→∞

∫ b

a

f ′(x) e−2πiξx dx

= lim
a→−∞
b→∞

(
e−2πiξbf(b) − e−2πiξaf(a) + 2πiξ

∫ b

a

f(x) e−2πiξx dx

)

= 2πiξ

∫ ∞

−∞

f(x) e−2πiξx dx

= 2πiξ f̂(ξ).

Finally, for ξ 6= 0 we have

|f̂(ξ)| =
|f̂ ′ (ξ)|
|2πiξ| ≤ ‖f̂ ′ ‖∞

|2πξ| ≤ ‖f ′‖1

|2πξ| .

For the inductive step, suppose that the result is valid for some m ≥ 1,
and suppose that f is (m + 1)-times everywhere differentiable and all of
f, f ′, . . . , f (m), f (m+1) are integrable. Set g = f (m). Then both g and g′ are
integrable so, by the base step,

(f (m+1))
∧

(ξ) = ĝ′(ξ) = 2πiξ ĝ(ξ) = (2πiξ)m+1 f̂(ξ).

Therefore the result holds for m + 1. ⊓⊔

In general, the Fourier transform f̂ of an integrable function f need not
itself be integrable. The following corollary gives us a simple sufficient con-

dition that implies that f̂ is integrable.

Corollary 9.2.15. If f ∈ L1(R) is twice differentiable and f ′′ ∈ L1(R), then

f̂ ∈ L1(R). In particular,

f ∈ C2
c (R) =⇒ f̂ ∈ L1(R).
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Proof. Since f is integrable, the Riemann–Lebesgue Lemma tells us that

f̂ ∈ C0(R). Therefore f̂ is continuous, so it is bounded near the origin. Also,

since f ′′ is integrable, Theorem 9.2.14 implies that |f̂(ξ)| ≤ C/|ξ|2 away from

the origin. Combining these facts, we conclude that f̂ is integrable. ⊓⊔

We introduced a space A(R) in equation (9.19). Restating that equation,

A(R) =
{
f̂ : f ∈ L1(R)

}
,

i.e., A(R) is the range of the Fourier transform as an operator on the domain
L1(R). We know that A(R) ⊆ C0(R), and we will use Corollary 9.2.15 to
prove that A(R) is dense in C0(R) (with respect to the uniform norm, which
is the standard norm on C0(R)).

Corollary 9.2.16. We have

C2
c (R) ⊆ A(R) ⊆ C0(R).

Consequently, A(R) is dense in C0(R).

Proof. The Riemann–Lebesgue Lemma implies that A(R) is contained in
C0(R). For the other inclusion, let g be any function in C2

c (R). Then g is
continuous and compactly supported, so g ∈ L1(R). Further, Corollary 9.2.15
ensures that ĝ ∈ L1(R), and by a change of variables we also have

∨

g ∈ L1(R).
Setting f =

∨

g and applying the Inversion Formula, it follows that

g = (
∨

g)
∧

= f̂ ∈ A(R).

Thus C2
c (R) ⊆ A(R). Exercise 9.1.16 tells us that the even smaller space

C∞
c (R) is dense in C0(R) with respect to the uniform norm, so we conclude

that A(R) is dense in C0(R) as well. ⊓⊔

However, A(R) is a proper subset of C0(R). According to Problem 9.2.31,
one specific function F ∈ C0(R)\A(R) is

F (x) =





1/ ln x, if x > e,

x/e, if − e ≤ x ≤ e,

−1/ ln(−x), if x < −e.

(9.30)

There even exist functions in Cc(R) that do not belong to A(R). One example,
constructed in [Her85], is

B(x) =





1
n sin(2π4nx), if 1

2n+1 ≤ |x| ≤ 1
2n ,

0, if x = 0 or |x| > 1
2 .

The letter B is for “butterfly”; see the illustration in Figure 9.7.
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Fig. 9.7 Graph of the butterfly function.

Problems

9.2.17. Show that the Fourier transform is linear on L1(R), i.e., if f, g ∈
L1(R) and a, b ∈ C, then (af + bg)

∧

= af̂ + b ĝ.

9.2.18. (a) Prove that if f ∈ L1(R) is even, then f̂ is even, and if f ∈ L1(R)

is odd, then f̂ is odd.

(b) Fix f ∈ L1(R). Prove that if f̂ is even then f is even, and if f̂ is odd
then f is odd.

9.2.19. Show that the Fourier transforms of the one-sided exponential f(x) =
e−x χ

[0,∞)(x) and two-sided exponential g(x) = e−|x| are

f̂(ξ) =
1

2πiξ + 1
and ĝ(ξ) =

2

4π2ξ2 + 1
.

Show further that ‖f̂ ‖∞ = ‖f‖1 and ‖ĝ ‖∞ = ‖g‖1.

9.2.20. Let ψ be the square wave function ψ = χ
[0, 1

2
) − χ

[− 1
2
,0]. Show that

ψ̂(ξ) = −2i
sin2(πξ/2)

πξ
,

and use this to prove that ‖ψ̂ ‖∞ < ‖ψ‖1 = 1.

9.2.21. Define the following operations on functions f : R → C.

Translation: (Taf)(x) = f(x − a), a ∈ R.

Modulation: (Mbf)(x) = e2πibxf(x), b ∈ R.

Dilation: (Dλ)f(x) = λf(λx), λ > 0.

Involution: f̃(x) = f(−x).
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Given a function f ∈ L1(R), prove the following statements, and also derive
analogous statements for the inverse Fourier transform.

(a) (Taf)
∧

(ξ) = (M−af̂ )(ξ) = e−2πiaξ f̂(ξ).

(b) (Mbf)
∧

(ξ) = (Tbf̂ )(ξ) = f̂(ξ − b).

(c) (Dλf)
∧

(ξ) = f̂(ξ/λ).

(d)
(
f̃

)∧
(ξ) = f̂(ξ).

(e)
(
f ∗ f̃

)∧
(ξ) = |f̂(ξ)|2.

9.2.22. Show that the only function in L1(R) that satisfies f = f ∗ f is
f = 0 a.e.

9.2.23. Suppose that f ∈ L1(R) is such that f̂ ∈ L1(R). Prove the following
statements.

(a) f, f̂ ∈ C0(R).

(b) f
∧∧

(x) = f(−x) for every x ∈ R.

(c) f
∧∧∧∧

(x) = f(x) for every x ∈ R.

9.2.24. (a) Prove directly that (χ[a,b])
∧ ∈ C0(R).

(b) Use part (a) and the density of the really simple functions in L1(R) to
give another proof of the Riemann–Lebesgue Lemma.

9.2.25. Prove that the Fourier transform is a continuous mapping of L1(R)
into C0(R). That is, show that if fn, f ∈ L1(R) and fn → f in L1-norm, then

fn̂ → f̂ uniformly.

9.2.26. Prove that if {kN}N∈N is an approximate identity, then k̂N (ξ) → 1
pointwise as N → ∞.

9.2.27. Given f ∈ L1(R), show that

{Taf}a∈R is complete in L1(R) =⇒ f̂(ξ) 6= 0 for all ξ ∈ R. (9.31)

Remark: The converse of equation (9.31) is also true, but this is a deeper
fact that is a consequence of Wiener’s Tauberian Theorem.

9.2.28. Show that if f, g ∈ L1(R) and f̂ ∈ L1(R), then fg ∈ L1(R) and

(fg)
∧

= f̂ ∗ ĝ.

9.2.29. Suppose f ∈ L1(R) and there exist constants C > 0 and 0 < α < 1

such that |f̂(ξ)| ≤ C/|ξ|1+α for all ξ 6= 0. Prove that f is Hölder continuous
with exponent α.

9.2.30. Show that

∫ ∞

−∞

sin πx

x
e−2π|x|+πix dx =

π

4
.
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9.2.31. Prove the following statements.

(a) If f ∈ L1(R) is odd, then supb≥1

∣∣∣
∫ b

1

bf(ξ)
ξ dξ

∣∣∣ < ∞.

(b) If f ∈ L1(R) is odd, f̂ is differentiable at ξ = 0, and f̂ ≥ 0 on (0,∞),

then f̂(ξ)/ξ ∈ L1(R).

(c) The function F defined in equation (9.30) belongs to C0(R) but does
not belong to A(R).

9.2.32. Let Df = f ′, and for k ∈ N let Dkf = f (k).

(a) Show that if f is n-times differentiable and xjf (k)(x) ∈ L1(R) for
j = 0, . . . ,m and k = 0, . . . , n, then

(
Dn

(
(−2πix)mf(x)

))∧

(ξ) = (2πiξ)n Dmf̂(ξ), for all ξ ∈ R.

(b) The Schwartz space is

S(R) =
{
f ∈ C∞(R) : xmf (n)(x) ∈ L∞(R) for all m,n ≥ 0

}
.

Exhibit a nonzero function in S(R), and show that if f ∈ S(R), then f (n) is
integrable for every n ≥ 0. Prove that S(R) is dense in L1(R).

(c) Show that if f ∈ S(R), then f̂ ∈ S(R).

(d) Prove that the Fourier transform maps S(R) bijectively onto itself.

9.3 Fourier Series

We proved in Section 8.4 that the trigonometric system {e2πinx}n∈Z is an
orthonormal sequence in L2[0, 1], and we stated that we would later prove
that the trigonometric system is complete in L2[0, 1] and hence is an ortho-
normal basis for that Hilbert space. We will complete that proof in this
section (and also establish other interesting results).

Throughout this section we continue to take F = C, and for notational
convenience we set

en(x) = e2πinx, for n ∈ Z.

Also, we let
E = {e2πinx}n∈Z = {en}n∈Z

denote the trigonometric system.
As noted, one of our main goals is to prove that E is an orthonormal basis

for L2[0, 1]. Once we have established that, it will follow from Theorem 8.3.7
that every function f ∈ L2[0, 1] can be uniquely written as
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f =
∑

n∈Z

〈f, en〉 en, (9.32)

where this series converges unconditionally in L2-norm. Equation (9.32) is
referred to as the Fourier series for f. The inner products 〈f, en〉 are called
the Fourier coefficients of f, and are traditionally denoted by

f̂(n) = 〈f, en〉 =

∫ 1

0

f(x) e−2πinx dx, for n ∈ Z. (9.33)

When we want to refer to the entire sequence of Fourier coefficients, we denote
it by

f̂ =
(
f̂(n)

)
n∈Z

.

Although much of our interest is in L2[0, 1], every integrable function f

in L1[0, 1] (which contains L2[0, 1]) has Fourier coefficients f̂(n) that are
defined by equation (9.33) for n ∈ Z. However, while we will prove that
the Fourier series representation in equation (9.32) holds for f ∈ L2[0, 1],
there are integrable functions f for which equation (9.32) does not hold. The
convergence of Fourier series in senses other than L2-norm can be a very
subtle issue, which we will explore in Section 9.3.6.

Fourier series and the Fourier transform have many similarities, and we
will see that many of the facts that we proved in Section 9.2 for the Fourier
transform have analogues for Fourier coefficients (in fact, historically speak-
ing, Fourier series came first). In particular, the techniques that we will use to
prove that the trigonometric system is complete in L2[0, 1] are similar to the
ones that we employed when we proved the Inversion Formula for the Fourier
transform. On the other hand, while there are many similarities, there are
interesting differences as well.

9.3.1 Periodic Functions

When we discussed Fourier series and the trigonometric system in Section
8.4 we considered L2[0, 1], the space of square-integrable functions on the
domain [0, 1]. However, it is entirely equivalent and often more convenient
to instead consider the space of functions that are 1-periodic on R and are
square-integrable on [0, 1], where 1-periodic means that

f(x + 1) = f(x) for x ∈ R.

We will denote this space by

L2(T) =

{
f :R → C : f is 1-periodic and

∫ 1

0

|f(x)|2 dx < ∞
}

.
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As usual, we identify any two functions in L2(T) that are equal a.e. The norm
on L2(T) is

‖f‖2 =

(∫ 1

0

|f(x)|2 dx

)1/2

.

We define Lp(T) similarly for finite p, and we let L∞(T) be the set of all
essentially bounded 1-periodic functions. Since the interval [0, 1] has finite
measure, we have

Lp(T) ⊆ L1(T), for 1 ≤ p ≤ ∞.

In contrast, Lp(R) is not contained in L1(R) for any p > 1, nor is L1(R)
contained in Lp(R).

Other spaces of functions on T are defined in the same way. For exam-
ple, C(T) is the space of all continuous, 1-periodic functions, and Cm(T)
is the space of all m-times differentiable, 1-periodic functions f such that
f, f ′, . . . , f (m) are all continuous.

A trivial, but important, fact about 1-periodic functions is that if f is an
element of L1(T), then

∫ 1

0

f(x − y) dx =

∫ 1

0

f(x) dx, for every y ∈ R. (9.34)

Thus, integrals on T are invariant under the change of variable x 7→ x − y.

Remark 9.3.1. A 1-periodic function is entirely determined by its values on
the interval [0, 1) (note that if we are considering almost-everywhere proper-
ties then we can use whichever of [0, 1) or [0, 1] is more convenient). In essence,
when dealing with 1-periodic functions we are really considering functions on
the group [0, 1) endowed with the operation of addition modulo 1. Letting
a mod 1 denote the fractional part of a, we can write the group operation on
[0, 1) as

x ⊕ y = x + y mod 1 =

{
x + y, if 0 ≤ x + y < 1,

x + y − 1, if 1 ≤ x + y < 2.

This group is isomorphic to the circle group S1 = {eiθ : θ ∈ R} under
multiplication of complex scalars. The circle is the one-dimensional torus;
hence our use of the letter T in this context. ♦

9.3.2 Decay of Fourier Coefficients

We begin by proving some facts about Fourier coefficients that are reminis-
cent of results that we established for the Fourier transform. For example,
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Lemma 9.2.3 showed that if f ∈ L1(R), then its Fourier transform f̂ is both
bounded and continuous. Now suppose that f is a 1-periodic integrable func-

tion, i.e., f ∈ L1(T). Then its Fourier coefficients f̂(n) are defined only for

integer values of n, so it no longer makes sense to ask whether f̂ is continuous,
but we see from the computation

|f̂(n)| =

∣∣∣∣
∫ 1

0

f(x) e−2πinx dx

∣∣∣∣ ≤
∫ 1

0

|f(x) e−2πinx| dx = ‖f‖1 (9.35)

that f̂(n) is bounded in n. In fact, equation (9.35) shows that if f ∈ L1(T)

then the sequence of Fourier coefficients f̂ belongs to ℓ∞(Z), and

‖f̂ ‖∞ ≤ ‖f‖1.

The next exercise gives a refinement of this fact.

Exercise 9.3.2 (Riemann–Lebesgue Lemma). Show that if f ∈ L1(T),

then f̂ ∈ c0, i.e.,
lim

|n|→∞
f̂(n) = 0. ♦

However, the fact that f̂ belongs to c0 does not give us any quantitative

information on how quickly (or slowly) f̂(n) decays to zero. Our next result
gives a connection between the total variation of f and the decay of its Fourier
coefficients. Here, BV(T) denotes the set of 1-periodic functions that have
bounded variation on the interval [0, 1]. The total variation of a 1-periodic
function f is V [f ; T] = V [f ; 0, 1].

Theorem 9.3.3. If f ∈ BV(T), then

|f̂(n)| ≤ V [f ; T]

|n| , for all n 6= 0.

Proof. Fix any integer n > 0, and for each integer k let Ik be the interval

Ik =
[

k−1
n , k

n

)
.

Let g be the step function on [0, 1) defined by

g =

n∑

k=1

f
(

k
n

)
χIk

.

If we assume that g is extended 1-periodically to R, then g ∈ L1(T). Therefore
the Fourier coefficients ĝ(j) exist for all j ∈ Z. In particular, the nth Fourier
coefficient of g is
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ĝ(n) =

n∑

k=1

f
(

k
n

)∫ k
n

k−1

n

e−2πinx dx =

n∑

k=1

f
(

k
n

)∫ k

k−1

e−2πix dx

n
= 0.

Recall that if a ≤ x < y ≤ b, then

|f(x) − f(y)| ≤ V [f ;x, y] ≤ V [f ; a, b].

Therefore,

|f̂(n)| = |f̂(n) − ĝ(n)| =

∣∣∣∣
∫ 1

0

(
f(x) − g(x)

)
e−2πinx dx

∣∣∣∣

≤
∫ 1

0

|f(x) − g(x)| dx

=
n∑

k=1

∫ k
n

k−1

n

|f(x) − f
(

k
n

)
| dx

≤
n∑

k=1

1

n
V

[
f ; k−1

n , k
n

]

≤ 1

n
V [f ; 0, 1],

where at the last step we have used the additivity property of the variation
given in Lemma 5.2.12. ⊓⊔

Thus, the Fourier coefficients of a function with bounded variation decay
on the order of 1/n. The next exercise gives a decay estimate for differentiable
functions, similar to the relationship between smoothness and decay for the
Fourier transform that was obtained in Theorem 9.2.14.

Exercise 9.3.4. Let m ∈ N be given. Prove that if f ∈ Cm(T) then

(f (k))
∧

(n) = (2πin)k f̂(n), for n ∈ Z and k = 0, . . . ,m.

Use this to show that

|f̂(n)| ≤ ‖f (m)‖1

|2πn|m , for all n 6= 0. ♦

In particular, it follows that if f ∈ C2(T), then its Fourier coefficients f̂(n)
are summable. Consequently, if we set

A(T) =
{
f ∈ L1(T) : f̂ ∈ ℓ1

}
,

then
C2(T) ⊆ A(T).
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However, this is not the best result. Let Cα(T) be the space of 1-periodic func-
tions that are Hölder continuous with exponent α. Then Bernstein’s Theorem
says that Cα(T) ⊆ A(T) for all α > 1/2. This result is sharp, i.e., C1/2(T) is
not contained in A(T). For proofs of these facts, see [Kat04, Thm. 6.3].

9.3.3 Convolution of Periodic Functions

One reason that we prefer Lp(T) over Lp[0, 1] is that it is notationally simpler
to define the convolution of 1-periodic functions than functions on [0, 1],
because we can avoid the use of the mod 1 operator. We give the formal
definition next; note how the assumption that g is 1-periodic comes into play
when we translate g to obtain g(x−y). If we wanted to define the convolution
of functions on the domain [0, 1], we would replace g(x−y) in equation (9.36)
with g(x − y mod 1).

Definition 9.3.5 (Convolution). Assume that f and g are measurable,
1-periodic functions. Their convolution is the function f ∗ g formally defined
by

(f ∗ g)(x) =

∫ 1

0

f(y) g(x − y) dy, (9.36)

if this integral exists. ♦
Here is Young’s Inequality for convolution of 1-periodic functions.

Exercise 9.3.6 (Young’s Inequality). Fix 1 ≤ p ≤ ∞, and assume that
f ∈ Lp(T) and g ∈ L1(T). Prove that

(a) f ∗ g is defined a.e.,

(b) f ∗ g is 1-periodic,

(c) f ∗ g is measurable and f ∗ g ∈ Lp(T),

(d) ‖f ∗ g‖p ≤ ‖f‖p ‖g‖1, and

(e) (f ∗ g)
∧

(n) = f̂(n) ĝ(n) for all n ∈ Z. ♦

9.3.4 Approximate Identities and the Inversion

Formula

We define approximate identities for periodic functions similarly to how we
defined them for functions on the real line (compare Definition 9.1.8).

Definition 9.3.7 (Approximate Identity). An approximate identity or a
summability kernel on T is a family {kN}N∈N of functions in L1(T) such that
the following three conditions are satisfied.
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(a) L1-normalization:
∫ 1

0
kN (x) dx = 1 for every N ∈ N.

(b) L1-boundedness: sup ‖kN‖1 < ∞.

(c) L1-concentration: For every 0 < δ < 1
2 ,

lim
N→∞

∫

δ≤|x|< 1
2

|kN (x)| dx = 0. ♦

Here is the analogue of Theorem 9.1.15 for 1-periodic functions.

Exercise 9.3.8. Let {kN}N∈N be an approximate identity for T. Prove the
following statements.

(a) If 1 ≤ p < ∞ and f ∈ Lp(T), then f ∗ kN → f in Lp-norm as N → ∞.

(b) If f ∈ C(T), then f ∗ kN → f uniformly as N → ∞. ♦
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Fig. 9.8 Two elements of the Fejér kernel. Top: w5. Bottom: w10.

We will need a periodic analogue of the Fejér kernel. We obtained the
Fejér kernel on R by starting with the Fejér function w, which is the Fourier
transform of the hat function W (x) = max{1−|x|, 0}. We dilated w to obtain
the elements wN of the Fejér kernel. Unfortunately, there is no convenient
dilation that we can apply to 1-periodic functions, but still we can create wN

as the transform of a hat function. Specifically, the “discrete hat function”
supported on the set of integers {−N − 1, . . . , N + 1} is
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WN (n) = max

{
1 − |n|

N + 1
, 0

}
, n ∈ Z. (9.37)

Just as we obtained the Fejér function by taking the Fourier transform of the
hat function, we now define wN by using WN (n) as coefficients in a Fourier
series. That is, we define

wN (x) =
∑

n∈Z

WN (n) e2πinx =
N∑

n=−N

(
1 − |n|

N + 1

)
e2πinx. (9.38)

The Fejér kernel for T is {wN}N∈N. Some elements of the Fejér kernel are
shown in Figure 9.8. We can see in the figure that wN appears to become
more like a “1-periodic spike train” as N increases, which is qualitatively
what we expect of an approximate identity. However, in contrast to the Fejér
kernel for the real line defined in Exercise 9.1.10, these functions wN are not
obtained by a dilation of some single function, and as a result it takes more
work to prove that {wN}N∈N is an approximate identity for T.

Exercise 9.3.9. Given scalars ak for k ∈ Z, let sN =
∑N

k=−N ak denote
the (symmetric) partial sums of these scalars. Their Cesàro means are the
averages

σN =
s0 + · · · + sN

N + 1

of the partial sums. Prove the following statements.

(a) σN =

N∑

n=−N

(
1 − |n|

N + 1

)
an =

N∑

n=−N

WN (n) an.

(b)

N∑

n=−N

e2πinx =
sin (2N + 1)πx

sinπx
.

(c) The function wN defined by equation (9.38) satisfies

wN (x) =
1

N + 1

(
sin (N + 1)πx

sin πx

)2

.

(d) {wN}N∈N is an approximate identity for T. ♦

The Fejér kernel is certainly not the only approximate identity for T, but it
will be useful for our purposes. One kernel that we cannot use is the Dirichlet
kernel {dN}N∈N, whose elements are the Fourier transforms of the “discrete
box function” on {−N, . . . , N}. Specifically, dN is defined by

dN (x) =
N∑

n=−N

e2πinx =
sin (2N + 1)πx

sin πx
. (9.39)
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Each function dN is integrable on T, and its graph does appear to become
more like a “1-periodic spike train” as N → ∞ (see Figure 9.9). However,
the oscillations of dN decay so slowly with N (see Problem 9.3.35) that we
end up with

sup
N∈N

‖dN‖1 = sup
N∈N

∫ 1

0

|dN (x)| dx = ∞.

That is, the “absolute mass” of dN grows with N. The “signed mass” of dN

is ∫ 1

0

dN = 1, for every N ∈ N,

but we achieve this only because the large oscillations of dN produce “mirac-
ulous cancellations” in the integral. Consequently, the Dirichlet kernel is not
an approximate identity for T.
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Fig. 9.9 Two elements of the Dirichlet kernel. Top: d5. Bottom: d10.

The fact that the Dirichlet kernel is not an approximate identity is un-
pleasant but very important. To see why, recall that we are hoping to prove
that the trigonometric system E = {en}n∈Z is an orthonormal basis for L2(T),
which implies in particular that for all f ∈ L2(T) we will have

f =
∑

n∈Z

f̂(n) en.

The partial sums of this series are therefore crucial, since we must show that
they converge to f. The symmetric partial sums SNf =

∑N
n=−N f̂(n) en of
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this series are precisely the convolutions of f with dN ! This is because

(f ∗ dN )(x) =

∫ 1

0

f(t) dN (x − t) dt

=

∫ 1

0

f(t)
N∑

n=−N

e2πin(x−t) dt

=

N∑

n=−N

(∫ 1

0

f(t) e−2πint dt

)
e2πinx

=

N∑

n=−N

f̂(n) en(x) = SNf(x). (9.40)

If it were the case that the Dirichlet kernel {dN}N∈N was an approximate
identity, then Exercise 9.3.8 would immediately imply that the partial sums
SNf = f ∗dN converge to f in Lp-norm for every f ∈ Lp(T) and every index
1 ≤ p ≤ ∞. This is precisely what we are hoping to prove when p = 2. And
we will prove this for p = 2, but the point is that we cannot use the Dirichlet
kernel to do it because {dN}N∈N is not an approximate identity. (Moreover,
this is not true for p = 1 or p = ∞, yet it would have to be true for all
1 ≤ p ≤ ∞ if {dN}N∈N were an approximate identity.)

Instead of trying to deal with f ∗ dN , which is the actual Nth symmetric
partial sum of the Fourier series, we will instead consider the convolution of
f with elements of the Fejér kernel. A computation similar to the one that
led to equation (9.40) shows that if f ∈ L1(T), then

(f ∗ wN )(x) =

∫ 1

0

f(t)wN (x − t) dt

=

∫ 1

0

f(t)

N∑

n=−N

(
1 − |n|

N + 1

)
e2πin(x−t) dt

=
N∑

n=−N

(
1 − |n|

N + 1

) (∫ 1

0

f(t) e−2πint dt

)
e2πinx

=

N∑

n=−N

(
1 − |n|

N + 1

)
f̂(n) e2πinx

=
N∑

n=−N

WN (n) f̂(n) en(x). (9.41)

Thus f ∗ wN is precisely the Nth Cesàro mean of the symmetric partial
sums of the Fourier series of f. Since {wN}N∈N is an approximate identity,
these Cesàro means f ∗wN are much better behaved than the actual partial
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sums f ∗ dN . Indeed, by applying Exercise 9.3.8 we immediately deduce the
following convergence results.

Lemma 9.3.10. (a) If 1 ≤ p < ∞ and f ∈ Lp(T), then f ∗ wN → f in
Lp-norm as N → ∞.

(b) If f ∈ C(T), then f ∗ wN → f uniformly as N → ∞. ♦

Lemma 9.3.10 tells us only that the Cesàro means f ∗wN of the symmet-
ric partial sums converge to f. Still, we will use this to prove the following
Inversion Formula for 1-periodic functions, which says that if f is integrable
and f̂ is summable, then the partial sums of the Fourier series converge uni-
formly to f (and therefore, since [0, 1] has finite measure, they also converge
in Lp-norm for every p). This result is analogous to the Inversion Formula
for the Fourier transform that we obtained in in Theorem 9.2.9.

Theorem 9.3.11 (Inversion Formula). If f ∈ L1(T) and f̂ ∈ ℓ1(Z), then
f is continuous and

f(x) =
∑

n∈Z

f̂(n) e2πinx, for all x ∈ R,

where this series converges with respect to the uniform norm (in fact, it con-
verges absolutely, and therefore unconditionally, with respect to ‖ · ‖u).

Proof. Since f̂ ∈ ℓ1(Z) and the uniform norm of en(x) = e2πinx is ‖en‖u = 1,
the sum of the norms of the terms in the Fourier series for f is

∑

n∈Z

‖f̂(n) en‖u =
∑

n∈Z

|f̂(n)| = ‖f̂ ‖1 < ∞.

Hence the series (
f̂

)∨
=

∑

n∈Z

f̂(n) en (9.42)

converges absolutely with respect to the uniform norm ‖ · ‖u. Since C(T)
is a Banach space, an absolutely convergent series in C(T) must converge
(in fact, it converges unconditionally). Therefore the series in equation (9.42)

converges uniformly, and
(
f̂

)∨
∈ C(T). Our task is to show that

(
f̂

)∨
equals f

(as an element of L1(T)).
Equation (9.41) tells us that

(f ∗ wN )(x) =
∑

n∈Z

WN (n) f̂(n) en(x).

Fix any particular x. If n ∈ Z, then WN (n) → 1 as N → ∞, so

lim
N→∞

WN (n) f̂(n) en(x) = f̂(n) en(x).
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Further, |WN (n) f̂(n) en(x)| ≤ |f̂(n)| and f̂ ∈ ℓ1(Z). Therefore, we can apply
the series version of the Dominated Convergence Theorem to obtain

lim
N→∞

(f ∗ wN )(x) = lim
N→∞

∑

n∈Z

WN (n) f̂(n) e2πinx

=
∑

n∈Z

lim
N→∞

WN (n) f̂(n) e2πinx

=
∑

n∈Z

f̂(n) e2πinx =
(
f̂

)∨
(x).

On the other hand, Lemma 9.3.10 implies that f ∗ wN → f in L1-norm, so
there is a subsequence such that (f ∗wNk

)(x) → f(x) pointwise a.e. Therefore(
f̂

)∨
(x) = f(x) for a.e. x. Thus f is equal almost everywhere to the contin-

uous function
(
f̂

)∨
, which is what we mean when we say that an element of

L1(R) is continuous. ⊓⊔

As a corollary, we see that integrable functions are uniquely determined
by their Fourier coefficients.

Corollary 9.3.12 (Uniqueness Theorem). If f, g ∈ L1(T), then

f = g a.e. ⇐⇒ f̂(n) = ĝ(n) for every n ∈ Z.

In particular,

f = 0 a.e. ⇐⇒ f̂(n) = 0 for every n ∈ Z. ♦

9.3.5 Completeness of the Trigonometric System

We know that the trigonometric system E = {en}n∈Z is an orthonormal
sequence in L2(T), and now we want to prove that it is an orthonormal basis
for L2(T). Because L2(T) is a Hilbert space and because E is orthonormal,
Theorem 8.3.7 tells us that in order to prove that E is a basis we need only
prove that E is complete. That is, if we can simply show that the finite linear
span of E is dense in L2(T), then we can immediately conclude that every

f ∈ L2(T) can actually be written as f =
∑

n∈Z f̂(n) en, where the series
converges unconditionally in L2-norm.

We will use the Fejér kernel to prove that E is complete in L2(T). In fact,
the same proof shows that E is complete in Lp(T) for every finite p, and also
that it is complete in C(T). Unfortunately, only for p = 2 does this allow us
to draw any extra conclusion about the basis properties of E . At the end of
this section we will comment more on the differences between the cases p = 2
and p 6= 2.
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Theorem 9.3.13. (a) E = {en}n∈Z is complete in Lp(T) for each 1 ≤ p < ∞.

(b) E = {en}n∈Z is complete in C(T) with respect to the uniform norm.

Proof. (a) Since p is finite, if f ∈ Lp(T) then f ∗ wN → f in Lp-norm (see
Lemma 9.3.10). From equation (9.41),

f ∗ wN =

N∑

n=−N

WN (n) f̂(n) en ∈ span(E),

so we conclude that f is the limit in Lp-norm of a sequence of elements of
span(E). This implies that span(E) is dense in Lp(T), and therefore E is a
complete sequence in Lp(T).

(b) The proof is similar, using the fact that Lemma 9.3.10 implies that
f ∗ wN → f uniformly for every f ∈ C(T). ⊓⊔

For p = 2, we obtain the following corollary.

Corollary 9.3.14 (The Trigonometric System is an ONB). The trigo-
nometric system E = {en}n∈Z is an orthonormal basis for L2(T). Conse-
quently, if f ∈ L2(T) then

f =
∑

n∈Z

f̂(n) en, (9.43)

where this series converges unconditionally in L2-norm. Further, we have the
Plancherel Equality,

‖f‖2
2 =

∑

n∈Z

|f̂(n)|2, for all f ∈ L2(T), (9.44)

and the Parseval Equality,

〈f, g〉 =
∑

n∈Z

f̂(n) ĝ(n), for all f, g ∈ L2(T).

Proof. Since E is both orthonormal and complete in L2(T), Theorem 8.3.7
implies that E is an orthonormal basis for L2(T). ⊓⊔

Thus, the L2-norm of a function f ∈ L2(T) is exactly equal to the ℓ2-norm

of its sequence of Fourier coefficients f̂ =
(
f̂(n)

)
n∈Z

. Moreover, equation

(9.43) shows that every square-integrable 1-periodic function f can be repre-
sented as a countable superposition of the “pure tones” en(x) = e2πinx over

integers n ∈ Z.

Example 9.3.15. Let f = χ
[0,1/2) − χ

[1/2,1) be the square wave function (also
known as the Haar wavelet). This function is square-integrable on [0, 1], so
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Fig. 9.10 Symmetric partial sums of the Fourier series of the square wave. Top: S5.

Middle: S15. Bottom: S75. The square wave itself is shown with dashed lines.

Corollary 9.3.14 implies that its Fourier series converges unconditionally in
L2-norm. In particular, the symmetric partial sums f ∗ dN converge to f in
L2-norm. Figure 9.10 shows f ∗dN for N = 5, 15, and 75. It does appear from
the diagram that ‖f − f ∗dN‖2 → 0, but we can also see Gibbs’ phenomenon
in this figure, which is that the partial sums do not converge uniformly to f.
Instead, f∗dN always overshoots f at its points of discontinuity by an amount
(about 9%) that does not decrease with N. For a proof of Gibbs’ phenomenon,
see [DM72] or other texts on harmonic analysis. ♦

Although the series in equation (9.43) converges unconditionally for every
f ∈ L2(T), it need not converge absolutely in L2-norm. For example, if f is
the 1-periodic function defined on [0, 1) by f(x) = x, then a direct calculation
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shows that

f̂(0) =
1

2
and f̂(n) = − 1

2πin
for n 6= 0.

Since f ∈ L2(T), its Fourier series f =
∑

n∈Z f̂(n) en converges uncondition-
ally in L2-norm. However, this series does not converge absolutely, because

∑

n∈Z

‖f̂(n)en‖2 =
∑

n∈Z

|f̂(n)| = ∞.

9.3.6 Convergence of Fourier Series for p 6= 2

We have seen two cases where the partial sums (and not just the Cesàro
means) of a Fourier series converge to f. First, by the Inversion Formula,

if f ∈ L1(T) is such that f̂ ∈ ℓ1(Z) then the Fourier series of f converges
uniformly to f. Second, Corollary 9.3.14 tells us that if f ∈ L2(T) then
the Fourier series converges to f in L2-norm. In both of these cases, the
convergence is unconditional.

The general situation is far more delicate. For a generic function f ∈ L1(T),
even if we restrict our attention to just the symmetric partial sums f ∗ dN ,
then there exist functions in L1(T) such that f ∗ dN does not converge to f
in L1-norm. Likewise, there exist functions f ∈ C(T) such that f ∗ dN does
not converge uniformly. We state this as the following theorem. We have not
developed the tools needed to prove this result, but one proof can be found
in [Heil11, Thm. 14.3].

Theorem 9.3.16. (a) There exists an integrable function f ∈ L1(T) whose
Fourier series does not converge in L1-norm (i.e., f∗dN does not converge
in L1-norm as N → ∞).

(b) There exists a continuous function f ∈ C(T) whose Fourier series does
not converge uniformly (i.e., f ∗ dN does not converge uniformly as
N → ∞). ♦

As a consequence, the trigonometric system is not a Schauder basis for
either L1(T) or C(T). The fact that there are continuous functions whose
Fourier series do not converge uniformly is surprising, but even more surpris-
ing is that there exist continuous functions f ∈ C(T) such that (f ∗ dN )(x)
diverges for almost every x (for one proof, see [Kat04, Thm. 3.5]). On the
other hand, if f ∈ C(T) is a continuous function that has bounded variation,
then the symmetric partial sums f ∗ dN will converge uniformly to f (see
[Kat04, Cor. 2.2]).

Turning to indices in the range 1 < p < ∞, it can be shown—albeit with
considerably more work than was needed to prove Corollary 9.3.14—that the
symmetric partial sums f ∗ dN do converge in Lp-norm when 1 < p < ∞.
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We state this as the following result; one proof can be found in [Heil11,
Thm. 14.8].

Theorem 9.3.17. If 1 < p < ∞, then for every f ∈ Lp(T) the symmetric
partial sums

f ∗ dN =

N∑

n=−N

f̂(n) en

converge to f in Lp-norm as N → ∞. ♦

Consequently, the trigonometric system E is a Schauder basis for Lp(T),
but even in this statement there is a subtlety. When p = 2, the Fourier series

f =
∑

n∈Z

f̂(n) en (9.45)

converges unconditionally. Hence, no matter how we choose to order Z, the
partial sums with respect to that ordering will converge. In contrast, when
1 < p < ∞ and p 6= 2, we know only that the symmetric partial sums converge
in Lp-norm. If p 6= 2, then there exist functions in Lp(T) whose Fourier series
converge conditionally in Lp-norm—only partial sums of certain orderings of
Z will converge (such as the symmetric partial sums, which are partial sums
corresponding to the ordering Z = {0,−1, 1,−2, 2,−3, 3, . . . }). We refer to
[Heil11, Chap. 14] for details.

There are even more layers of subtlety when we consider other types of
convergence. One of the deepest results in Fourier analysis is the following
theorem on pointwise almost everywhere convergence of Fourier series, proved
by Lennart Carleson for p = 2 [Car66] and extended to 1 < p < ∞ by Richard
Hunt [Hunt68].

Theorem 9.3.18 (Carleson–Hunt Theorem). If 1 < p < ∞, then for
each f ∈ Lp(T), the symmetric partial sums f∗dN converge to f pointwise a.e.
That is,

f(x) = lim
N→∞

N∑

n=−N

f̂(n) e2πinx a.e. ♦

Problems

9.3.19. Given a sequence of scalars a = (ak)k∈Z, let sN =
∑N

k=−N ak denote
the partial sums and σN = (s0 + · · ·+ sN )/(N + 1) the Cesàro means of this
sequence (compare Exercise 9.3.9).

(a) Show that if the partial sums sN converge, then the Cesàro means σN

converge to the same limit, i.e.,
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lim
N→∞

N∑

n=−N

(
1 − |n|

N + 1

)
an = lim

N→∞
sN =

∞∑

n=−∞

an.

(b) Set an = (−1)n for n ≥ 0 and an = 0 for n < 0. Show that the series∑
n∈Z an is Cesàro summable even though the partial sums do not converge,

and find the limit of the Cesàro means.

9.3.20. (a) Prove that every function in C(T) is uniformly continuous, and
use this to prove that translation is strongly continuous on C(T), i.e.,

lim
a→0

‖Taf − f‖∞ = 0, for all f ∈ C(T).

(b) Fix 1 ≤ p < ∞. Prove that C(T) is dense in Lp(T). Use this to show
that translation is strongly continuous on Lp(T), i.e., lima→0 ‖Taf−f‖p = 0
for all 1 ≤ p < ∞ and all f ∈ Lp(T).

9.3.21. Prove that C∞(T) is dense in Lp(T) for each index 1 ≤ p < ∞, and
C∞(T) is dense in C(T) with respect to the uniform norm.

9.3.22. Prove that there is no function in L1(T) that is an identity for con-
volution on L1(T).

9.3.23. Given f ∈ L1(T), prove that f ∗ en = f̂(n) en for every n ∈ Z, where
en(x) = e2πinx (thus the complex exponentials with integer frequencies are
eigenvectors for convolution).

9.3.24. (a) Show that if f ∈ L1(T) and f̂ ∈ ℓ2(Z), then f ∈ L2(T).

(b) Use part (a) to show that the Plancherel Equality given in equation
(8.13) remains true if we assume only that f belongs to L1(T) rather than
requiring it to belong to the smaller space L2(T). In other words, show that
if f ∈ L1(T), then ∑

n∈Z

|f̂(n)|2 = ‖f‖2
2,

in the sense that one side is finite if and only if the other side is finite and in
this case they are equal; otherwise, both sides are infinite.

9.3.25. Let f(x) = x2 − x + 1
6 for x ∈ [0, 1). Note that if we extend f

1-periodically to R, then f ∈ C(T).

(a) Compute f̂ and show that f̂ ∈ ℓ1(Z). Use this to prove that

∞∑

n=1

cos 2πnx

2π2n2
= x2 − x +

1

6
, for x ∈ [0, 1], (9.46)

where the series converges uniformly on [0, 1].

(b) Prove Euler’s Formula (see Problem 8.4.6).
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(c) Find the value of

∞∑

n=1

1

n4
.

9.3.26. Assume that α is a real number that is not an integer, and let

f(x) =
πeπiα

sinπα
e−2πiαx, for x ∈ [0, 1].

Show that f̂(n) = 1/(n + α) for each n ∈ Z, and use the Plancherel Equality
to prove that

∞∑

n=−∞

1

(n + α)2
=

π2

sin2πα
.

9.3.27. (a) Show that if f ∈ L1(T) and g ∈ C(T) then f ∗ g ∈ C(T).

(b) Prove that convolution commutes with differentiation in the following
sense: If f ∈ L1(T) and g ∈ C1(T), then f ∗ g ∈ C1(T), and (f ∗ g)′ = f ∗ g′.

9.3.28. Suppose that f ∈ AC(T), i.e., f is 1-periodic and is absolutely con-
tinuous on [0, 1].

(a) Prove that f̂ ′ (n) = 2πinf̂(n) for n ∈ Z, and use this to show that

nf̂(n) → 0 as |n| → ∞.

(b) Show that if
∫ 1

0
f(x) dx = 0, then we have Wirtinger’s Inequality :

∫ 1

0

|f(x)|2 dx ≤ 1

4π2

∫ 1

0

|f ′(x)|2.

Further, equality holds if and only if f(x) = ae2πix +be−2πix for some scalars
a, b ∈ C (equivalently, f(x) = c cos(2πx) + id sin(2πx), where c = a + b and
d = a − b).

9.3.29. Fix 0 < α < 1. Prove that if f ∈ C(T) is Hölder continuous with
exponent α, then

|f̂(n)| ≤ 1

2

(
1

2|n|

)α

, for all n 6= 0.

9.3.30. Let {wN}N∈N be the Fejér kernel, and prove that the series f =∑∞
k=1 2−k w2k converges in L1(T), but f̂ /∈ ℓ1(Z).

9.3.31. Show that if a sequence c = (cn)n∈Z satisfies
∑

n∈Z |ncn| < ∞, then

the function ĉ(ξ) =
∑

n∈Z cne−2πinξ is differentiable, and at every point ξ ∈ R

we have
ĉ ′(ξ) = −2πi

∑

n∈Z

ncne−2πinξ = d̂(ξ),

where d = (−2πincn)n∈Z ∈ ℓ1(Z).
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9.3.32. Prove that A(T) = L2(T) ∗ L2(T). That is, show that f ∈ A(T) if
and only if f = g ∗ h for some g, h ∈ L2(T).

9.3.33. Given f ∈ L1(T) and g ∈ L∞(T), prove Fejér’s Lemma:

lim
m→∞

∫ 1

0

f(x) g(mx) dx = f̂(0) ĝ(0) =

(∫ 1

0

f(x) dx

) (∫ 1

0

g(x) dx

)
.

9.3.34. Assume that E ⊆ [0, 1] is measurable and |E| > 0. Given δ ≥ 0, prove
that there are at most finitely many positive integers n such that sin 2πnx ≥ δ
for all x ∈ E.

9.3.35. Let {dN}N∈N be the Dirichlet kernel, where dN is defined by equation

(9.39). Prove that
∫ 1

0
dN = 1 for each N ∈ N, and for N > 1 we have

4

π2

N∑

k=1

1

k
≤ ‖dN‖1 ≤ 3 +

4

π2

N∑

k=1

1

k
.

Conclude that the Dirichlet kernel is not an approximate identity for T.

9.4 The Fourier Transform on L2(R)

We defined the Fourier transform of functions in L1(R) in Section 9.2. Now
we will consider functions that belong to L2(R).

For motivation, recall the analogous situation for Fourier series. Theorem
8.4.2 told us that the mapping U : L2(T) → ℓ2(Z) that sends a 1-periodic

function f ∈ L2(T) to its sequence of Fourier coefficients U(f) =
(
f̂(n)

)
n∈Z

is a unitary operator in the sense of Definition 8.3.16. That is, U is linear,
surjective, and isometric (i.e., it preserves the norms of vectors). The isometric
nature of U is a direct consequence of the Plancherel Equality:

‖U(f)‖2
2 =

∞∑

n=−∞

|f̂(n)|2 =

∫ 1

0

|f(x)|2 dx = ‖f‖2
2.

Is there an analogue to U for the Fourier transform? That is, does the Fourier
transform isometrically map functions in L2(R) to another Hilbert space?
We will see that the answer is yes, but first we have to address a more basic
issue, one that does not arise for Fourier series because L2[0, 1] ⊆ L1[0, 1].
In contrast, L2(R) is not contained in L1(R), so how do we even define the
Fourier transform of a function in L2(R)? Definition 9.2.1 told us that if f is
integrable on R then its Fourier transform is

f̂(ξ) =

∫ ∞

−∞

f(x) e−2πiξx dx, for ξ ∈ R. (9.47)
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However, there are functions in L2(R) that are not integrable, and for such
functions the integral in equation (9.47) will not exist. On the other hand,
L1(R) ∩ L2(R) is dense in L2(R), and the Fourier transform is well-defined
for all functions in this subspace, so perhaps there is a way to extend the
definition of the Fourier transform from this dense subspace to all of L2(R).

To investigate this, we first consider functions that are both integrable
and square-integrable. In fact, we will restrict our attention to functions in
C2

c (R). This space will be convenient for our purposes because it is dense in
both L1(R) and in L2(R) and, as we show next, if f ∈ C2

c (R) then both f

and f̂ are continuous and have good decay.

Lemma 9.4.1. If f ∈ C2
c (R), then the following statements hold.

(a) There is a constant C ≥ 0 such that |f̂(ξ)| ≤ C/|ξ|2 for all ξ 6= 0.

(b) f and f̂ both belong to L1(R) ∩ L2(R).

(c) f and f̂ are continuous.

Proof. Since f ∈ C2
c (R), we know that f is continuous, integrable, and square-

integrable. Its Fourier transform f̂ exists and is defined by equation (9.47).

The Riemann–Lebesgue Lemma implies that f̂ ∈ C0(R), so f̂ is continuous
and bounded. Away from the origin, equation (9.29) tells us that

|f̂(ξ)| ≤ ‖f ′′‖1

4π2|ξ|2 , for ξ 6= 0.

This is sufficient decay to ensure that f̂ ∈ L1(R) and f̂ ∈ L2(R). ⊓⊔

Now we prove that the mapping that sends f to f̂ is isometric with respect
to the L2-norm on the domain C2

c (R).

Lemma 9.4.2. ‖f̂ ‖2 = ‖f‖2 for all f ∈ C2
c (R).

Proof. Fix f ∈ C2
c (R). Applying Lemma 9.4.1, we have that f and f̂ are each

continuous, integrable, and square-integrable. We define the involution of f
to be

f̃(x) = f(−x).

This is an integrable function, and by making a change of variables we see
that its Fourier transform is

(
f̃

)∧
(ξ) =

∫ ∞

−∞

f(−x) e−2πiξx dx = f̂(ξ).

We will also need the autocorrelation of f, which is

g(x) =
(
f ∗ f̃

)
(x) =

∫ ∞

−∞

f(y) f(y − x) dy. (9.48)
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Since L1(R) is closed under convolution, we have g ∈ L1(R). Additionally, g

is continuous because both f and f̃ are continuous and integrable. Since the
Fourier transform converts convolution to multiplication, we compute that

ĝ(ξ) =
(
f ∗ f̃

)∧

(ξ) = f̂(ξ) f̂(ξ) = |f̂(ξ)|2 ∈ L1(R).

Thus g and ĝ are both integrable, so the Inversion Formula (Theorem 9.2.9)

implies that g(x) =
(
ĝ

)∨
(x) for every x. Evaluating the continuous function g

at x = 0 yields

g(0) =
(
ĝ

)∨
(0) =

∫ ∞

−∞

ĝ(ξ) dξ =

∫ ∞

−∞

|f̂(ξ)|2 dξ = ‖f̂ ‖2
2.

On the other hand, evaluating equation (9.48) at x = 0 gives

g(0) =
(
f ∗ f̃

)
(0) =

∫ ∞

−∞

f(y) f(y) dy = ‖f‖2
2.

Therefore ‖f̂ ‖2 = ‖f‖2. ⊓⊔

Lemma 9.4.2 implies that the operator F : C2
c (R) → L2(R) defined by

F(f) = f̂ is linear and isometric (with respect to the L2-norm). Now, C2
c (R)

is not complete with respect to the L2-norm, but it is dense in L2(R). Thus F
is a “very nice” linear map whose domain is a dense subspace of the Hilbert
space L2(R). We will show that we can extend F so that its domain is all of
L2(R), and we can do so in such a way that the mapping F : L2(R) → L2(R)
is linear, bijective, and isometric.

To do this, fix any function f ∈ L2(R). Since C2
c (R) is dense in L2(R),

there exists a sequence {fn}n∈N in C2
c (R) such that fn → f in L2-norm.

Consequently, {fn}n∈N is Cauchy in L2(R). We have fm − fn ∈ C2
c (R) for

every m and n, so we can apply Lemma 9.4.2 to obtain

∥∥fm̂ − fn̂

∥∥
2

=
∥∥(fm − fn)

∧
∥∥

2
= ‖fm − fn‖2.

This implies that
{
fn̂

}
n∈N

is a Cauchy sequence in L2(R). Since L2(R) is
complete, this sequence must converge. Therefore, there exists some function
f̂ ∈ L2(R) such that fn̂ → f̂ in L2-norm.

We would like to define f̂ to be the Fourier transform of f, but there is a
complication. There could be many sequences in C2

c (R) that converge to f,

and so we could obtain a different function f̂ if we chose a different sequence

{fn}n∈N. Therefore, we must show that f̂ is well-defined. That is, we must
show that no matter which functions fn ∈ C2

c (R) that we choose that satisfy

‖f − fn‖2 → 0, we obtain the same result for f̂ .
To see this, suppose that {hn}n∈N is another sequence of functions in

C2
c (R) such that ‖f − hn‖2 → 0. Then {hn}n∈N is Cauchy in L2-norm, and



9.4 The Fourier Transform on L2(R) 381

since ‖hm
̂ − hn

̂ ‖2 = ‖hm − hn‖2, we see that
{
hn
̂ }

n∈N
is Cauchy in L2(R)

and therefore converges to some function ĥ ∈ L2(R). Applying the continuity
of the norm, it follows that

∥∥f̂ − ĥ
∥∥

2
= lim

n→∞

∥∥fn̂ − hn
̂ ∥∥

2
= lim

n→∞
‖fn − hn‖2 = ‖f − f‖2 = 0.

Thus ĥ = f̂ a.e., so they are the same element of L2(R). We therefore can
make the following definition.

Definition 9.4.3 (The Fourier Transform on L2(R)). Given f ∈ L2(R),
let {fn}n∈N be any sequence in C2

c (R) such that fn → f in L2-norm. Then

the Fourier transform of f is the function f̂ ∈ L2(R) such that fn̂ → f̂ in
L2-norm. ♦

This defines the Fourier transform of every square-integrable function.
However, we now have two Fourier transforms, one defined on L1(R) and one
on L2(R). We show next that these two definitions coincide for any function

that belongs to both spaces. Note that if f ∈ L1(R), then f̂ is a continuous
function that is defined by the integral that appears in equation (9.47). In

contrast, if f ∈ L2(R), then f̂ is only implicitly defined as the L2-norm limit

of fn̂ where fn ∈ C2
c (R) and fn → f in L2-norm. Hence, if f ∈ L2(R), then

its Fourier transform f̂ is an element of L2(R), and therefore is only defined
up to sets of measure zero.

Lemma 9.4.4. If f ∈ L1(R) ∩ L2(R), then the function f̂ given by equation

(9.47) is equal almost everywhere to the function f̂ given by Definition 9.4.3.

Proof. Fix a function f ∈ L1(R) ∩ L2(R). Let f̂ be the function defined
by equation (9.47), and let F be the L2-Fourier transform of f as given by
Definition 9.4.3.

The proof of Theorem 9.1.12 shows how to explicitly construct functions
fN ∈ C∞

c (R) that converge to f in L1-norm. Specifically, if fN is defined
as in equation (9.5), then ‖f − fN‖1 → 0. Replacing the L1-norm by the
L2-norm, exactly the same proof shows that we also have ‖f − fN‖2 → 0
(compare Problem 9.1.22).

Now, since ‖f − fN‖1 → 0, Lemma 9.2.3 implies that fN̂ → f̂ uniformly,
and hence pointwise. On the other hand, since ‖f − fN‖2 → 0, we have by

definition that fN̂ → F in L2-norm. Hence there is a subsequence of the fN̂

that converges to F pointwise a.e. But this subsequence also converges to f̂
pointwise, so we conclude that F = f̂ a.e. ⊓⊔

In summary, we have defined the Fourier transform of every function in
L1(R) ∪ L2(R). For functions in L1(R) the Fourier transform is given by
equation (9.47), while for functions in L2(R) it is given by Definition 9.4.3.
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For functions that belong to both L1(R) and L2(R) these two definitions
coincide in the usual almost everywhere sense.

We show next that the Fourier transform is isometric on all of L2(R).

Lemma 9.4.5. (a) ‖f̂ ‖2 = ‖f‖2 for every f ∈ L2(R).

(b) If {fn}n∈N is any sequence in L2(R) such that fn → f in L2-norm, then

fn̂ → f̂ in L2-norm.

Proof. (a) Fix f ∈ L2(R), and choose any functions fn ∈ C2
c (R) such that

fn → f in L2-norm. Then fn̂ → f̂ in L2-norm by definition. Since fn ∈ C2
c (R)

we have ‖fn̂‖2 = ‖fn‖2 by Lemma 9.4.2. Therefore, by the continuity of the
norm, we obtain

‖f̂ ‖2 = lim
n→∞

‖fn̂‖2 = lim
n→∞

‖fn‖2 = ‖f‖2.

(b) Assume that fn, f ∈ L2(R) are such that ‖f − fn‖2 → 0. Applying
part (a), it follows that

‖f̂ − fn̂ ‖2 = ‖(f − fn)
∧‖2 = ‖f − fn‖2 → 0. ⊓⊔

Now we show that the Fourier transform is a unitary operator on L2(R).

Theorem 9.4.6. The Fourier transform F : L2(R) → L2(R) is a unitary
operator, i.e., F is linear, isometric, and surjective. In particular, we have
the Plancherel Equality,

∥∥f̂
∥∥

2
= ‖f‖2, for all f ∈ L2(R), (9.49)

and the Parseval Equality,

〈
f̂ , ĝ

〉
= 〈f, g〉, for all f, g ∈ L2(R). (9.50)

Proof. If f ∈ L2(R), then f̂ ∈ L2(R) by definition, so F maps L2(R) into
itself. Lemma 9.4.5 shows that equation (9.49) holds, so F is isometric. The
reader should verify that F is linear. Consequently, Lemma 8.3.15 implies
that F preserves inner products, i.e., equation (9.50) holds. Hence, it only
remains to show that F is surjective.

First we will prove that range(F) is dense in L2(R). To do this, choose any

function f ∈ C2
c (R). By Lemma 9.4.1, both f and f̂ belong to L1(R) ∩ L2(R).

The inverse Fourier transform of f is defined by
∨

f (ξ) = f̂(−ξ), so we also

have
∨

f ∈ L1(R) ∩ L2(R). Since f and f̂ are both integrable, the Inversion
Formula (Theorem 9.2.9) implies that

f =
( ∨

f
)∧

= F(
∨

f ).
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Thus, f and
∨

f both belong to L2(R) and f = F(
∨

f ), so we conclude that
f ∈ range(F). This shows that C2

c (R) ⊆ range(F). But C2
c (R) is dense in

L2(R), so range(F) must be dense in L2(R).
Since the range is dense, its closure is all of L2(R). However, since F is

isometric, Problem 9.4.9 implies that range(F) is a closed subset of L2(R).
Therefore range(F) equals its closure, which is L2(R), so F is surjective. ⊓⊔

Since the Fourier transform F : L2(R) → L2(R) is unitary, it has an inverse
F−1 : L2(R) → L2(R) that is also unitary. We call F−1 the inverse Fourier

transform, and if f ∈ L2(R) then we say that
∨

f = F−1(f) is the inverse
Fourier transform of f. As functions in L2(R),

f =
(
f̂

)∨
=

( ∨

f
)∧

,

i.e., these functions are equal almost everywhere. The Plancherel and Parseval
Equalities hold for the inverse Fourier transform. That is, for all f and g in
L2(R) we have

∥∥ ∨

f
∥∥

2
= ‖f‖2 and

〈 ∨

f ,
∨

g
〉

= 〈f, g〉.

Example 9.4.7. As an application, we will compute the Fourier transform of
the sinc function

s(x) = sinc(x) =
sin πx

πx
,

which is square-integrable but not integrable. Therefore its Fourier transform
is not given by equation (9.47).

First consider the box function χ = χ
[− 1

2
, 1
2
]. Since χ is integrable, we can

use equation (9.47) to compute its Fourier transform:

χ̂(ξ) =

∫ ∞

−∞

χ(x) e−2πiξx dx =

∫ 1/2

−1/2

e−2πiξx dx =
sinπξ

πξ
= s(ξ).

Because χ is even, a similar calculation shows that its inverse Fourier trans-

form is
∨

χ = s. Since χ belongs to L2(R), it satisfies the Inversion Formula
for the L2 Fourier transform. Therefore,

χ =
( ∨

χ
)∧

= ŝ.

This is an equality of functions in L2(R), i.e., it holds a.e. Thus, even though
we cannot use equation (9.47) to compute the Fourier transform of s, we have
demonstrated that ŝ = χ. A similar computation shows that

∨

s = χ. ♦
Many formulas that hold for the Fourier transform of functions in L1(R)

have analogues that hold for functions in L2(R). For example, if f ∈ L1(R)

then we know that
∨

f (ξ) = f̂(−ξ) for every ξ. We show next that this implies
that a similar formula holds for functions in L2(R).
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Lemma 9.4.8. If f ∈ L2(R) then
∨

f (ξ) = f̂(−ξ) for almost every ξ ∈ R.

Proof. Fix f ∈ L2(R). There exist functions fn ∈ C2
c (R) that converge to f

in L2-norm. By the Plancherel Equality, it follows that fn̂ → f̂ in L2-norm,
and consequently there exists a subsequence {gn}n∈N of {fn}n∈N such that

ĝn → f̂ pointwise a.e.
Now, since {gn}n∈N is a subsequence of {fn}n∈N, we have that gn → f in

L2-norm. Therefore, the Plancherel Equality for the inverse Fourier transform

implies that
∨

gn →
∨

f in L2-norm. Consequently, there exists a subsequence

{hn}n∈N of {gn}n∈N such that
∨

hn →
∨

f a.e.
Since {hn}n∈N is a subsequence of {gn}n∈N, we conclude that we have both

hn
̂ → f̂ a.e. and

∨

hn →
∨

f a.e. But hn belongs to L1(R), so
∨

hn(ξ) = hn
̂ (−ξ)

for every ξ. Therefore, for a.e. ξ we have

∨

f (ξ) = lim
n→∞

∨

hn(ξ) = lim
n→∞

hn
̂ (−ξ) = f̂(−ξ). ⊓⊔

It is possible to extend the Fourier transform beyond L1(R) and L2(R).
The process of interpolation allows us to define the Fourier transform of any
function in Lp(R) for indices in the range 1 ≤ p ≤ 2. We can even go much
further and define the Fourier transform of every tempered distribution. For
details we refer to texts such as [DM72], [Ben97], [Kat04], or [Heil11].

Problems

9.4.9. Let X and Y be Banach spaces, and assume that A : X → Y is
both linear and isometric (that is, ‖Ax‖ = ‖x‖ for all x ∈ X). Prove that
range(A) = {Ax : x ∈ X} is a closed subspace of Y.

9.4.10. Suppose that f ∈ L2(R) is such that f̂ ∈ L1(R). Show that f ∈ C0(R)

and ‖f‖∞ ≤ ‖f̂ ‖1. Exhibit a function f ∈ L2(R)\L1(R) such that f̂ ∈ L1(R).

9.4.11. (a) Show that if f ∈ L1(R) and f̂ ∈ L2(R), then f ∈ L2(R).

(b) Use part (a) to show that the Plancherel Equality holds for functions
in L1(R), i.e., if f ∈ L1(R), then

∫ ∞

−∞

|f(x)|2 dx =

∫ ∞

−∞

|f̂(ξ)|2 dξ,

in the sense that one side is finite if and only if the other side is finite, and
in this case they are equal, otherwise both are infinite.

(c) Exhibit a function f ∈ L1(R) \ L2(R) such that f̂ /∈ L1(R).
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(d) Show that the Riemann–Lebesgue Lemma does not hold for all func-
tions in L2(R). Specifically, show that there is a square-integrable f such that

f̂ is continuous, yet f̂(ξ) does not converge to zero as |ξ| → ∞.

9.4.12. Prove the following facts about convolution of functions in L2(R).

(a) If f, g ∈ L2(R), then (fg)
∧

is continuous, (fg)
∧

= f̂ ∗ ĝ, and f ∗ g =

(f̂ ĝ )
∨

.

(b) If f, g ∈ L2(R) and f ∗ g ∈ L2(R), then (f ∗ g)
∧

= f̂ ĝ. In particular,
this is the case if f ∈ L1(R) ∩ L2(R) and g ∈ L2(R).

(c) L2(R) ∗ L2(R) = A(R) (defined in equation (9.19)). That is, f ∈ A(R)
if and only if f = g ∗ h for some g, h ∈ L2(R).

9.4.13. Show that ‖f ∗ g‖2
2 ≤ ‖f ∗ f‖2 ‖g ∗ g‖2 for all f, g ∈ L2(R), but the

inequality ‖f ∗ g‖2
1 ≤ ‖f ∗ f‖1 ‖g ∗ g‖1 cannot hold for all f, g ∈ L1(R).

9.4.14. Exhibit a nontrivial function f ∈ L2(R) that satisfies f = f ∗ f a.e.
Contrast this with Problem 9.2.22, which shows there are no such functions
in L1(R).

9.4.15. Given T > 0, we define the Dirichlet function d2πT to be

d2πT (ξ) =
sin 2πTξ

πξ
.

Although d2πT is not integrable, it does belong to L2(R) and therefore has a
Fourier transform in the sense of Definition 9.4.3.

(a) Prove that d̂2πT = χ
[−T,T ].

(b) Show that if f ∈ L2(R), then f ∗ d2πT ∈ L2(R) and

(f ∗ d2πT )
∧

= f̂ χ
[−T,T ] → f̂ as T → ∞,

where the convergence is in L2-norm.

(c) Show that if f ∈ L2(R), then f ∗d2πT → f in L2-norm as T → ∞. Note
that the Dirichlet kernel {d2πN}N∈N does not form an approximate identity.

9.4.16. (a) Show that there exist nontrivial functions f ∈ L1(R) ∩ L2(R)
such that f ∗ d2πT = 0.

(b) Use the Plancherel Equality to show that

∫ ∞

0

sin2 t

t2
dt =

π

2
.

As a consequence,
∫ ∞

0
sin2 t

t2 dt =
∫ ∞

0
sin t

t dt, where the latter integral is an

improper Riemann integral (see Problem 4.6.19).
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(c) Generalizing part (b), use the Parseval Equality to show that if j ∈ N

and r is any real number with r ≥ j, then

∫ ∞

−∞

( sin t

t

)j sin rt

t
dt = π.

9.4.17. Given a, b > 0, compute

∫ ∞

−∞

dx

(x2 + a2) (x2 + b2)
.

9.4.18. Fix g ∈ L2(R). Prove that {Tag}a∈R is complete in L2(R) if and only
if ĝ(ξ) 6= 0 a.e.

9.4.19. Given g ∈ L2(R), show that

{Tkg}k∈Z is an orthonormal sequence ⇐⇒
∑

k∈Z

|ĝ(ξ − k)|2 = 1 a.e.

9.4.20. (a) Fix a > 1, b > 0, c > 0, and let ψ ∈ L2(R) be such that

supp(ψ̂ ) ⊆ [c, c + b−1] and

∑

n∈Z

|ψ̂(anξ)|2 = b for a.e. ξ ≥ 0.

For all k, n ∈ Z, define

ψkn(x) = an/2ψ(anx − bk).

Prove that the wavelet system W(ψ) = {ψkn}k,n∈Z satisfies

∑

k,n∈Z

|〈f, ψkn〉|2 =
1

b
‖f‖2

2, for all f ∈ H2
+(R), (9.51)

where H2
+(R) =

{
f ∈ L2(R) : supp(f̂ ) ⊆ [0,∞)

}
.

Remark: Using the language of frame theory, equation (9.51) says that
W(ψ) is a tight frame for H2

+(R).

(b) Exhibit functions ψ1, ψ2 ∈ L2(R) such that ψ̂1, ψ̂2 are continuous,
and W(ψ1) ∪ W(ψ2) is a Parseval frame for L2(R), i.e.,

∑

k,n∈Z

|〈f, ψ1
kn〉|2 +

∑

k,n∈Z

|〈f, ψ2
kn〉|2 = ‖f‖2

2, for all f ∈ L2(R).



Hints for Selected Exercises and
Problems

1.4.5 Theorem 1.2.8.

2.1.24 If x ∈ (1/3, 2/3) then c1 = 1.

2.1.37 We have not yet shown that Lebesgue measure is invariant under rotations. If U

is an orthogonal matrix and Q is a cube in Rd with sides parallel to the coordinate axes,
then U(Q) is a cube but its sides need not be parallel to the coordinate axes, so we do not

yet know whether |Q|e and |U(Q)|e are equal. On the other hand, every cube is contained
in a ball, an orthogonal matrix maps balls to balls, and every ball is contained in a cube.

2.1.40 Consider
S

r∈Q (r − Z).

2.2.36 No.

2.2.43 (b) Consider E = (−∞, 0) ∪ N.

2.3.21 Let K ⊆ E be compact with |K| > 0.

3.1.18 (b) Consider f−1(U) where U = {x + iy : x ∈ (a, b), y ∈ R}.

4.2.16 ⇐.
R

E (ψ−φ). Do not try to integrate f if it has not been shown to be measurable.

4.2.17 (a) Consider {εn ≤ f < ε(n + 1)} × [εn, ε(n + 1)).

4.4.23 |f | + |fn| − |f − fn| ≥ 0.

4.5.31 Part (b) is not a consequence of part (a) since f(t)/t need not be integrable.

4.6.18 By the MCT,
R ∞
0 xe−x2(1+y2) dx = limn→∞

R n
0 · · · (improper Riemann integral).

4.6.21 (d) What is χ
{g>t}(x) as a function of t? (f) Compare nω(2n) to

R 2n
n ω.

4.6.27 |(f ∗ g)(x + h) − (f ∗ g)(x)| =
˛

˛

R

f(x + h − y) g(y) dy −
R

f(x − y) g(y) dy
˛

˛.

5.2.4 (a) Consider partitions that include 2/(nπ). (b) Set αn = (2/(4nπ))1/2 and βn =

(2/((4n − 1)π))1/2. Show
R βn

αn
g′(x) dx = g(βn) − g(αn). (c) Show h is Lipschitz.

5.2.11 (b) Consider Γ ′ = Γ ∪ {x′}.

5.2.22 (a) Consider partitions that include (2/(kπ))1/b. (b) Consider 0 < x < y ≤ 1 and
set h = y − x. If xb+1 < h, then |f(y) − f(x)| ≤ |f(y)| + |f(x)| ≤ yb + xb; show xb ≤ hα

and yb ≤ Chα. If xb+1 ≥ h, use the MVT to show |f(y) − f(x)| = h |f ′(t)| ≤ 2bh
t

≤ · · · .

5.4.6 First consider D+f ≥ δ > 0.
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388 Hints

5.5.22 (a) Find a bounded E on which |f | ≥ ε. For |x| large, consider B2|x|(x).

6.1.10 Problem 6.1.9.

6.4.22 (c) Nonempty convex subsets of [a, b] are intervals or points. (e) Lemma 6.2.4. (f)
Intervals, then open sets, then measurable sets.

6.5.12 Corollary 6.5.8(b). Caution: fn → f a.e. does not imply fn ◦ g → f ◦ g a.e.

6.5.13 (b) Corollary 6.2.3. Do not assume f ◦ g must be measurable.

7.1.26 (d) Consider
P2n

k=n+1 |xk|
p.

7.2.16 q/p and (q/p)′.

7.2.20 Induction for 1 < p1, . . . , pn, r < ∞. Alternative: Discrete Jensen.

7.2.22 Use Problem 7.2.21. First show tω(t) ≤ C ω(t)1/p′

.

7.2.23 (b) limp→0+(xp − 1)/p = ln x.

7.3.21 Fatou, Hölder, Egorov.

7.3.22 (a) First consider gN (x) =
PN

n=1 |fn(x)| and g(x) =
P∞

n=1 |fn(x)|.

7.3.26 (a) Show a, b, c ≥ 0 and a ≤ b + c implies a
1+a

≤ b
1+b

+ c
1+c

.

7.4.5 Converse to Hölder does not apply when p = 1. Consider efh in equation (5.26).

8.1.12 Apply CBS to
R b

a f ′(x)1/2/f ′(x)1/2 dx.

8.3.30 Find a bounded function m such that m(x) 6= 0 a.e. and f/m /∈ L2[a, b].

8.4.11 (a) {b1/2e2πibnx}n∈Z is an ONB for L2(Ik) where Ik = [ak, ak + 1
b
]. If f ∈ Cc(R)

then f(x) g(x − ak) ∈ L2(Ik). Cc(R) is dense.

9.1.33 Convolve with an approximate identity, and consider the Arzelá–Ascoli Theorem
(for one statement of this theorem see [Heil18, Sec. 4.9]).

9.1.34 Let J = {j1, j2, . . . } be a countable subset of I. Define f(xjn ) = n for n ∈ N and

f(xi) = 0 for i ∈ I\J0. Use the fact that {xi}i∈I is a Hamel basis to extend f(x) to x ∈ R.

9.1.35 (a) Exercises 9.1.31 and 9.1.32 are helpful. (c) First show there is an integer-valued

function n(x) such that f(x) = αx + n(x) and n(x + y) = n(x) + n(y).

9.2.29 Use the Inversion Formula to write f(x+h)−f(x) in terms of bf ; break the integral
into large |ξ| and small |ξ|.

9.2.32 (c) Leibniz’s rule: (fg)(n) =
Pn

k=0

`n
k

´

f (n−k) g(k).

9.3.25 (c) π4/90.

9.3.33 Consider f = en first.

9.3.34 Consider
P sin 2πnkx

k
.

9.3.35 For the lower estimate, 1
2
‖dN‖1 ≥

R 1/2
0

| sin(2N+1)πx|
π|x|

dx =
R N+ 1

2
0

| sin πx|
π|x|

dx ≥
PN−1

k=0

R k+1
k

| sin πx|
π|x|

dx. For the upper estimate, show 1
| sin πx|

≤ 1
π|x|

+ (1 − 2
π

), |x| ≤ 1
2
,

and 1
2
‖dN‖1 ≤

R 1/2
0

| sin(2N+1)πx|
π|x|

dx + (1− 2
π

)
R 1/2
0 | sin(2N + 1)πx| dx. Remark: Euler’s

constant is γ = limN→∞

“

PN
k=1

1
k
− ln N

”

≈ 0.57721566 . . . .



Index of Symbols

Sets

Symbol Description Reference

∅ Empty set Preliminaries

Br(x) Open ball of radius r centered at x Definition 1.1.5

C Complex plane Preliminaries

F Choice of C or [−∞,∞] Preliminaries

L = L(Rd) σ-algebra of Lebesgue measurable sets Notation 2.2.2

N Natural numbers, {1, 2, 3, . . . } Preliminaries

Q Rational numbers Preliminaries

R Real line Preliminaries

T Domain of 1-periodic functions Section 9.3.1

Z Integers, {. . . ,−1, 0, 1, . . . } Preliminaries

[−∞,∞] Extended real line Preliminaries

Operations on Sets

Symbol Description Reference

AC = X\A Complement of a set A ⊆ X Preliminaries

A◦ Interior of a set A Definition 1.1.5

A Closure of a set A Definition 1.1.5

∂A Boundary of a set A Definition 1.1.5

A × B Cartesian product of A and B Preliminaries

dist(A,B) Distance between two sets Equation (2.11)

E + h Translation of a set E ⊆ Rd Preliminaries

|E|e Exterior Lebesgue measure of E ⊆ Rd Definition 2.1.8

|E|i Inner Lebesgue measure of E ⊆ Rd Problem 2.2.43

|E| Lebesgue measure of E ⊆ Rd Definition 2.2.1
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390 Symbols

lim infEk Liminf of sets Definition 2.1.14

lim supEk Limsup of sets Definition 2.1.14

inf(S) Infimum of a set of real numbers Preliminaries

P(X) Power set of X Preliminaries

span(F) Finite linear span of a set F Definition 1.2.1

span(F) Closed linear span of F Notation 8.2.12

sup(S) Supremum of a set of real numbers Preliminaries

vol(Q) Volume of a box Q Definition 2.1.1

Sequences

Symbol Description Reference

{Qk} Countable sequence of boxes Notation 2.1.3

{xi}i∈I Sequence indexed by I Preliminaries

(xi)i∈I Sequence of scalars indexed by I Preliminaries

lim infxn liminf of a sequence of real numbers Preliminaries

lim supxn limsup of a sequence of real numbers Preliminaries

δn nth standard basis vector Equation (7.14)

Functions

Symbol Description Reference

χA Characteristic function of A Preliminaries

sinc(x) sinc function Exercise 4.3.2

w(x) Fejér function Exercise 9.1.10

W (x) Hat function Exercise 9.1.2

Operations on Functions

Symbol Description Reference

esssup f Essential supremum of f Definition 2.2.26

f Complex conjugate of f Preliminaries

|f | Absolute value of f Preliminaries

f ′ Derivative of f Preliminaries

f− Negative part of f Preliminaries

f+ Positive part of f Preliminaries

f̃h Average of f over a ball of radius h Section 5.5

f̂(n) nth Fourier coefficient of f Section 8.4

f̂ Fourier transform of f Definition 9.2.1
∨

f Inverse Fourier transform of f Definition 9.2.8

f |S Restriction of f to S Preliminaries
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f(A) Direct image of A under f Preliminaries

f−1(B) Inverse image of B under f Preliminaries

{f > a} Shorthand for {x : f(x) > a} Preliminaries

fn → f a.e. Pointwise a.e. convergence Notation 3.2.8

fn ր f Monotone increasing sequence Preliminaries

fn
m→ f Convergence in measure Definition 3.5.1

f ∗ g Convolution of f and g Section 4.6.3

Mf Maximal function of f Definition 5.5.5

range(f) Range of f Preliminaries

supp(f) Support of f Section 1.3.1

Taf(x) Translation of f (= f(x − a)) Preliminaries

V [f ; a, b] Total variation of f on [a, b] Definition 5.2.1

V +[f ; a, b] Positive variation of f on [a, b] Definition 5.2.13

V −[f ; a, b] Negative variation of f on [a, b] Definition 5.2.13

Some Vector Spaces

Symbol Description Reference

A(R) Range of the Fourier transform Section 9.2

AC[a, b] Absolutely continuous functions on [a, b] Definition 6.1.1

BV[a, b] Functions of bounded variation on [a, b] Definition 5.2.1

c00 Finite sequences Section 7.1.6

c0 Sequences vanishing at infinity Section 7.1.6

C(X) Continuous functions on X Section 1.3

Cb(X) Bounded continuous functions on X Section 1.3

C0(R
d) Continuous functions vanishing at infinity Section 1.3.1

Cc(R
d) Continuous, compactly supported functions Section 1.3.1

Cα(I) Hölder continuous functions on an interval Problem 1.4.5

Cm(R) m-times differentiable functions Section 1.3.1

C∞(R) Infinitely differentiable functions Section 1.3.1

ℓp p-summable sequences Definition 7.1.2

L1(E) Lebesgue space of integrable functions Definition 4.4.3

L1
loc(R

d) Locally integrable functions Definition 5.5.4

Lp(E) Lebesgue space of p-integrable functions Definition 7.2.1

Lp(T) Space of 1-periodic Lp functions Definition 9.3.1

L∞(E) Space of essentially bounded functions Definition 3.3.3

Lip(I) Lipschitz functions on an interval Section 5.2.2

S(R) Schwartz space Problem 9.2.32



392 Symbols

Hilbert Space Notations

Symbol Description Reference

〈·, ·〉 Generic inner product Definition 8.1.1

〈x, y〉 Inner product of vectors in ℓ2 Example 8.1.7

〈f, g〉 Inner product of functions in L2(E) Example 8.1.8

A⊥ Orthogonal complement of a set A Definition 8.2.4

f ⊥ g Orthogonal vectors Definition 8.2.1

x · y Dot product of vectors x and y Preliminaries

Some Norms

Symbol Description Reference

‖ · ‖ Generic norm Definition 1.2.3

‖x‖ Euclidean norm of a vector x Preliminaries

‖f‖u Uniform norm of a function f Definition 1.3.1

‖f‖1 L1-norm of a function f Definition 4.4.1

‖f‖p Lp-norm of a function f Definition 7.2.1

‖f‖∞ L∞-norm of a function f Section 3.3

‖f‖BV Bounded variation norm of a function f Section 5.2.1

‖x‖p ℓp-norm of a sequence x Definition 7.1.1

‖x‖∞ sup-norm of a sequence x Definition 7.1.1

Miscellaneous Symbols

Symbol Description Reference

∀ = “for all” Math symbol

∃ = “there exists” Math symbol

a.e. Almost everywhere Notation 2.2.24

d(·, ·) Generic metric Definition 1.1.1

det(L) Determinant of a matrix L Section 2.3.3

p′ Dual index to p Preliminaries

δij Kronecker δ Preliminaries

|Γ | Mesh size of a partition Γ Preliminaries

⊓⊔ End of proof Preliminaries

♦ End of Remark, Example, or Exercise Preliminaries

♦ End of Theorem whose proof is omitted Preliminaries

∗ Challenging Problem Preliminaries



References

[Ask75] R. Askey, Orthogonal Polynomials and Special Functions, SIAM, Philadelphia,
1975.

[BS11] R. G. Bartle and D. R. Serbert, Introduction to Real Analysis, Fourth Edition,
Wiley, New York, 2011.

[Ben97] J. J. Benedetto, Harmonic Analysis and Applications, CRC Press, Boca Raton,

FL, 1997.
[BC09] J. J. Benedetto and W. Czaja, Integration and Modern Analysis, Birkhäuser,
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Index

absolutely

continuous function, 220

convergent series, 25, 269, 282

accumulation point, 17

almost

everywhere, 66

periodic function, 326

antiderivative, 188

antilinear, 290

approximate identity, 210, 333, 365

autocorrelation, 379

Axiom of Choice, 33, 81

Baire Category Theorem, 63

ball

closed, 197

open, 17, 34, 261

Banach space, 24, 264

Banach–Zaretsky Theorem, 229

basis

Hamel, 23, 267

orthonormal, 311

Schauder, 288, 311

standard, 264

Beppo Levi Theorem, 127

Bernstein’s Theorem, 365

Bessel’s Inequality, 306

biorthogonal sequence, 305

Borel

σ-algebra, 81

set, 81, 182

Borel–Cantelli Lemma, 44

boundary, 17

of a box, 35

point, 17

bounded

above, 8

below, 8

closed interval, 4

set, 17

variation, 183

Bounded Convergence Theorem, 148

box, 35

function, 314

C, 1

Cantor Intersection Theorem, 52

Cantor set, 47, 52

fat, 49, 69

Cantor–Lebesgue function, 179

Carathéodory’s Criterion, 64

Carleson–Hunt Theorem, 322, 375

Cartesian product, 3

Cauchy

in measure, 114, 279

sequence, 9, 16, 264

uniformly, 28

Cauchy–Bunyakovski–Schwarz Inequality,
291

Cesàro means, 367

characteristic function, 6

Chebyshev’s Inequality, 125

Classical Sampling Theorem, 325

closed

interval, 4

set, 17

span, 27, 302

Closest Point Theorem, 298

closure of a set, 17

cluster point, 17

compact

set, 18

support, 29

complete
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inner product space, 292

metric space, 16

normed space, 24, 264

sequence, 288, 304, 310

complex

conjugate, 1

exponential function, 87, 320

plane, 1

componentwise convergence, 263

conjugate symmetry, 290

continuity, 20

from above, 73

from below, 72

of the inner product, 292

of the norm, 24

uniform, 20, 220

convergence

absolute, 25, 269, 282

componentwise, 263

in ℓp-norm, 262

in L1-norm, 140

in Lp-norm, 277

in L∞-norm, 105

in measure, 111

in the extended real sense, 10

pointwise, 107

pointwise a.e., 97, 107

uniform, 107

weak, 294, 318

convergent

sequence, 16, 262

series, 24

converse of Hölder’s Inequality, 274

convex

function, 246

set, 26, 261

convolution, 209, 328

approximate identity for, 333, 365

identity element for, 341

of periodic functions, 365

of sequences, 340

countable

additivity, 59

set, 7

subadditivity, 42

countably infinite, 7

counting measure, 86, 160

cover

by boxes, 36

finite, 18

open, 18

subcover, 18

cube, 35

DCT, 147

decreasing sequence, 5

defined almost everywhere, 91

delta

measure, 86, 160

sequence, 5

dense set, 17, 152

denumerable, 7

derivate, 200

Devil’s staircase, 179

diameter, 56

differentiable

at a point, 13

everywhere, 13

dilation, 358

Dini numbers, 200

Dirac measure, 86

direct image, 6

Dirichlet

function, 119, 154, 184

kernel, 367, 378

discrete Fourier transform, 346

distance, 15, 23

between sets, 55

distribution function, 175

divergence to ∞, 10

Dominated Convergence Theorem, 147

for series, 158

Generalized, 159

dot product, 4

double integral, 161

dual index, 2, 252, 256

Dvoretzky–Rogers Theorem, 308

empty set, 2

equivalence

class, 3, 82, 277

relation, 82, 277

equivalent norm, 26, 194

essential supremum, 66

essentially bounded, 67, 270

Euclidean

metric, 16

norm, 4, 34, 255

space, 4

Euler’s

constant, 388

Formula, 324

everywhere differentiable, 13

extended

interval, 4

real numbers, 1

real-valued function, 87

exterior Lebesgue measure, 40



Index 397

F, 2

Fσ-set, 62

Fatou’s Lemma, 130, 137

for series, 132

Fejér

function, 334, 350

kernel, 334, 350

Fejér’s Lemma, 378

finite

almost everywhere, 94

closed interval, 4

cover, 18

linear independence, 22

linear span, 22

sequence, 267

subadditivity, 43

Fourier

coefficients, 321, 361

inverse transform, 349, 383

series, 321, 361

transform, 344

frame, 325

FTC, 177

Fubini’s Theorem, 161, 175

full measure, 54

function

autocorrelation, 379

box, 314

complex exponential, 87, 320

complex-valued, 8, 87

continuous, 20

convex, 246

differentiable, 13

Dirichlet, 119, 154, 184

essentially bounded, 67, 270

everywhere differentiable, 13

extended real-valued, 7, 87

Fejér, 334, 350

Hardy–Littlewood maximal, 211

Heaviside, 91

Hölder continuous, 31, 186

integrable, 138

Lebesgue measurable, 89

Lipschitz, 31, 76, 186

locally integrable, 210

lower semicontinuous, 22

monotone increasing, 7, 184

negative part, 7, 91

p-integrable, 269

periodic, 361

positive part, 7, 91

real-valued, 7

really simple, 153

scalar-valued, 8

simple, 99

sinc, 133, 347, 383

singular, 180

strictly increasing, 7

sublinear, 217

uniformly continuous, 20, 220

upper semicontinuous, 21

fundamental sequence, 304, 310

Fundamental Theorem

of Calculus, 14, 188, 235

Gδ-set, 62

Gabor system, 323, 325

Generalized DCT, 159

generated σ-algebra, 71

Gibbs’ phenomenon, 373

Gram–Schmidt, 312

graph of a function, 132

Haar

system, 314

wavelet, 314, 372

Hamel basis, 23, 267

Hardy’s Inequalities, 294

Hardy–Littlewood

maximal function, 211

Maximal Theorem, 212

hat function, 30

Hausdorff metric space, 19, 21

Heaviside function, 91

Heine–Borel Theorem, 19

Hilbert space, 292

separable, 312

Hölder continuous function, 31, 186

Hölder’s Inequality, 258, 268, 271, 276

identity for convolution, 341

increasing sequence, 5

independence, 22

indeterminate form, 2

index set, 5

induced

metric, 23

norm, 290

infimum, 8

inner

Lebesgue measure, 69

product, 290

integrable function, 138

integral

Lebesgue, 124, 133

Riemann, 14, 155

integration by parts, 237

interior, 17
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Intermediate Value Theorem, 233

interval, 3

inverse

Fourier transform, 349, 383

function, 6

image, 6

involution, 358, 379

isometry, 316

iterated integral, 161

Jensen’s Inequality, 250

discrete, 246

Jordan decomposition, 192

kernel

Dirichlet, 367, 378

Fejér, 334, 350

Kronecker delta, 5

Lebesgue

Differentiation Theorem, 213

exterior measure, 40

inner measure, 69

integral, 124, 133

integral of a simple function, 121

measurable function, 89

measurable set, 53

measure, 53

point, 216

set, 216

space, 104, 139, 269

left-shift operator, 317

Legendre polynomials, 313

length, 23

liminf, 10, 43

limsup, 10, 43

linear independence, 22

Lipschitz

constant, 31, 76, 186

continuous function, 31, 76, 186

locally integrable function, 210

lower

bound, 8

Riemann sum, 14, 155

semicontinuous function, 22

Luzin’s Theorem, 118

Marching Boxes, 112, 278

maximal function, 211

Maximal Theorem, 212

MCT, 127, 137

measurable

function, 89

set, 53

measure

counting, 86, 160

delta, 86, 160

Dirac, 86

positive, 160

signed, 160

mesh size, 13, 155

metric, 15

induced, 23

metric space, 15

complete, 16

minimal sequence, 305

Minkowski’s

Inequality, 259, 271

Integral Inequality, 276, 341

modulation, 358

modulus, 1

Monotone Convergence Theorem, 127, 137

for series, 132

monotone increasing

function, 7, 184

sequence, 5, 12

monotonicity, 41

N, 1

negative

part of a function, 91

variation, 191

nonoverlapping boxes, 36

nonsingular matrix, 78

norm, 23

Euclidean, 4, 34, 255

induced, 290

uniform, 27, 104

normed space, 23

complete, 24

null set, 54

one-sided exponential, 358

open

ball, 17, 261

cover, 18

interval, 4

set, 17

operator, 317

orthogonal

complement, 296

matrix, 78

projection, 299

sequence, 295

subspaces, 296

vectors, 295

orthonormal

basis, 311
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sequence, 295

vectors, 295

oscillation, 70

outer Lebesgue measure, 40

p-integrable function, 269

p-summable sequence, 254

Parallelogram Law, 291

Parseval Equality, 310, 321, 372, 382

partial sums, 11, 24, 373

symmetric, 368

partition, 2, 13

perfect set, 48

periodic function, 361

Plancherel Equality, 310, 321, 372, 382

pointwise

a.e. convergence, 97, 107

convergence, 107

Polar Identity, 291

positive

measure, 160

part of a function, 91

variation, 191

power set, 3

pre-Hilbert space, 290

proper subset, 2

Pythagorean Theorem, 291

Q, 1

quotient space, 277

R, 1

Rademacher system, 319

real line, 1

really simple function, 153

refinement of a partition, 189

region under the graph, 132

relation, 3

relative complement, 3

representative, 277

Reverse Triangle Inequality, 24

Riemann

integral, 14, 155

sum, 14, 155

Riemann–Lebesgue Lemma, 347

Riesz–Fischer Theorem, 279

right-shift operator, 317

σ-algebra, 59, 160

Borel, 81

generated, 71

Lebesgue, 59

σ-finite, 61

scalar, 2, 88

Schauder basis, 288, 311

Schwartz space, 360

Schwarz Inequality, 291

semi-inner product, 290

seminorm, 23

induced, 290

separable space, 17, 284

sequence

biorthogonal, 305

bounded, 254

Cauchy, 9, 16, 264

complete, 304, 310

convergent, 16, 262

fundamental, 304, 310

increasing, 12

minimal, 305

monotone, 5

p-summable, 254

square summable, 254

summable, 254

total, 304, 310

sequentially compact, 19

series

absolutely convergent, 25, 269, 282

convergent, 24

harmonic, 25, 307

unconditionally convergent, 307

set

Borel, 81, 182

bounded, 17

Cantor, 47, 52, 69

compact, 18

dense, 17, 152

disjoint, 2

empty, 2

Fσ , 62

Gδ, 62

measurable, 53

perfect, 48

power, 3

regularly shrinking, 216

relative complement, 3

sequentially compact, 19

Smith–Volterra–Cantor, 49, 69

symmetric difference, 51

totally disconnected, 48

Shannon Sampling Theorem, 325

Shrinking

Boxes, 130

Triangles, 107

shrinking regularly, 216

signed measure, 160

simple function, 99

standard representation, 99
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Simple Vitali Lemma, 195

sinc function, 133, 347, 383

singular

function, 180

value decomposition, 78
Smith–Volterra–Cantor set, 49, 69

span

closed, 27, 302

finite, 22
linear, 22

square

summable sequence, 254

wave, 314, 358, 372

standard
basis, 6, 264

representation, 99
Steinhaus Theorem, 82, 176

strictly increasing

function, 7
sequence, 5

strong

Lp-derivative, 343
continuity of translation, 376

subadditivity
countable, 42

finite, 43

sublinear function, 217

submultiplicative, 173

subset, 2
proper, 2

summability kernel, 333, 365
summable sequence, 254

sup-norm, 255
support, 29, 283

compact, 29, 280
supporting line, 250

supremum, 8

property, 9
SVD, 78

symmetric
difference, 51

partial sums, 368

T, 362
Tchebyshev’s Inequality, 125, 275

tent function, 30

ternary expansion, 47

Tonelli’s Theorem, 168, 175

topology, 17

total

sequence, 304, 310

variation, 183

totally disconnected set, 48
translation, 358

of a function, 6, 152, 194, 282
of a set, 4

translation-invariance, 41

Triangle Inequality, 15, 23, 105, 140, 261,

272

trigonometric system, 320, 360

two-sided exponential, 358

unconditionally convergent series, 307

uncountable set, 7

uniform
continuity, 20, 220

convergence, 107

norm, 27, 104

uniformly Cauchy, 28
Uniqueness Theorem, 352, 371

unitary operator, 317
upper

bound, 8

Riemann sum, 14, 155
semicontinuous function, 21

Urysohn’s Lemma, 150

variation of a function, 183

vector space, 22
Vitali

cover, 197

Covering Lemma, 197
volume of a box, 35

Walsh system, 319

wavelet, 314

Haar, 372
system, 386

weak convergence, 294, 318
Weierstrass Approximation Theorem, 29

Wiener’s Tauberian Theorem, 359
Wirtinger’s Inequality, 377

Young’s Inequality, 338

for periodic functions, 365
for sequences, 340

Z, 1

zero sequence, 256

ZFC, 81
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